1
|
Kartsova L, Makeeva D, Kravchenko A, Moskvichev D, Polikarpova D. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Sakai K, Iwazaki T, Yamashita E, Nakagawa A, Sakuraba F, Enomoto A, Inagaki M, Takeda S. Observation of unexpected molecular binding activity for Mu phage tail fibre chaperones. J Biochem 2019; 166:529-535. [PMID: 31504613 DOI: 10.1093/jb/mvz068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
In the history of viral research, one of the important biological features of bacteriophage Mu is the ability to expand its host range. For extending the host range, the Mu phage encodes two alternate tail fibre genes. Classical amber mutation experiments and genome sequence analysis of Mu phage suggested that gene products (gp) of geneS (gpS = gp49) and gene S' (gpS' = gp52) are tail fibres and that gene products of geneU (gpU = gp50) and geneU' (gpU' = gp51) work for tail fibre assembly or tail fibre chaperones. Depending on the gene orientation, a pair of genes 49-50 or 52-51 is expressed for producing different tail fibres that enable Mu phage to recognize different host cell surface. Since several fibrous proteins including some phage tail fibres employ their specific chaperone to facilitate folding and prevent aggregation, we expected that gp50 or gp51 would be a specific chaperone for gp49 and gp52, respectively. However, heterologous overexpression results for gp49 or gp52 (tail fibre subunit) together with gp51 and gp50, respectively, were also effective in producing soluble Mu tail fibres. Moreover, we successfully purified non-native gp49-gp51 and gp52-gp50 complexes. These facts showed that gp50 and gp51 were fungible and functional for both gp49 and gp52 each other.
Collapse
Affiliation(s)
- Kohei Sakai
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Takuma Iwazaki
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumiya Sakuraba
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Atsushi Enomoto
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Minoru Inagaki
- Department of Life Science, Faculty of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
3
|
Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns? Anal Chim Acta 2015; 889:58-70. [DOI: 10.1016/j.aca.2015.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022]
|
4
|
O'Brien JP, Needham BD, Brown DB, Trent MS, Brodbelt JS. Top-Down Strategies for the Structural Elucidation of Intact Gram-negative Bacterial Endotoxins. Chem Sci 2014; 5:4291-4301. [PMID: 25386333 PMCID: PMC4224326 DOI: 10.1039/c4sc01034e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Re-modelling of lipopolysaccharides, which are the primary constituent of the outer cell membrane of Gram-negative bacteria, modulates pathogenesis and resistance to microbials. Reported herein is the characterization of intact Gram-negative bacterial lipooligosaccharides (LOS) via a new strategy utilizing online liquid chromatography (LC) coupled with ultraviolet photodissociation (UVPD) mass spectrometry. Compared to collision-based MS/MS methods, UVPD and UVPD/HCD promoted a greater array of cleavages within both the glycan and lipid moieties, including C-C, C-N, C-O cleavages in the acyl chains as well as glycosidic and cross-ring cleavages, thus providing the most far-reaching structural characterization of LOS. This LC-MS/MS strategy affords a robust analytical method to structurally characterize complex mixtures of bacterial endotoxins that maintains the integrity of the core oligosaccharide and lipid A domains of LOS, providing direct feedback about the cell envelope architectures and LOS modification strategies involved in resistance host innate immune defense.
Collapse
Affiliation(s)
- John P O'Brien
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| | - Brittany D Needham
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Dusty B Brown
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - M Stephen Trent
- The University of Texas at Austin, Department of Molecular Biosciences, 2506 Speedway A5000, Austin, TX, USA 78712
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, USA 78712
| |
Collapse
|
5
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
6
|
Abstract
The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University Medial Campus, Boston, MA, USA.
| |
Collapse
|
7
|
Zhang Y, Zhang P, Wang Z, Huang L. AN INNOVATIVE DERIVATIZATION METHOD FOR SIMULTANEOUS DETERMINATION OF URONIC ACIDS AND NEUTRAL AND AMINO SUGARS IN COEXISTING SAMPLES BY HPLC-ESI-MS/MS2. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.579216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ying Zhang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Ping Zhang
- b Chemistry and Chemical Engineering School , Xianyang Normal University , Xianyang, China
| | - Zhongfu Wang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Linjuan Huang
- a Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| |
Collapse
|
8
|
Kojima H, Inagaki M, Tomita T, Watanabe T, Uchida S. Improved separation and characterization of lipopolysaccharide related compounds by reverse phase ion pairing-HPLC/electrospray ionization-quadrupole-mass spectrometry (RPIP-HPLC/ESI-Q-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:442-8. [PMID: 20061194 DOI: 10.1016/j.jchromb.2009.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
A new approach for the separation and inline characterization of lipopolysaccharide (LPS) related compounds has been developed. The separation was based on the difference in the number of charged phosphate and ethanolamine groups, as non-stoichiometric substituents, on the polysaccharide backbone, and was achieved with reverse phase ion-pairing chromatography (RPIP-HPLC). Tributylamine was used as an ion-pair reagent. In the conditions used in this study, tributylammonium then binds to the LPS related compounds through the negatively charged phosphate groups. This changes the hydrophobicity of the analytes at different positions and allows for separation based on both the number and position of the substituents on the analyte. The RPIP-HPLC was found to be effective for the separation of the O,N-deacylated derivative (deON) and polysaccharide portion (PS) from the LPS of Escherichia coli C strain. Post-column fluorescence derivatization (FLD), using sodium periodate and taurine, was used to detect the separated LPS related species. On the other hand, the separated species were also detected by direct infusion into the ESI-Q-MS using a volatile ammonium acetate buffer rather than the more traditional potassium phosphate buffer. The signal to noise ratio (S/N ratio) was low for the total ion chromatogram, however, high S/N ratios as well as good resolution were attained by selected ion monitoring (SIM) using m/z numbers corresponding to species with different numbers of non-stoichiometric substituents. Five species for deON and ten species for PS were clearly identified on the SIM chromatogram on the RPIP-HPLC/ESI-Q-MS. Accordingly, the present method allows for the effective separation and inline identification of the species corresponding to the diverse non-stoichiometric substitutions in LPS related compounds.
Collapse
Affiliation(s)
- Hisaki Kojima
- Analytical Science, Preclinical Development, Banyu Pharmaceutical Co. Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | |
Collapse
|