1
|
Shoff TA, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Determination of Trends Underlying Aspartic Acid Isomerization in Intact Proteins Reveals Unusually Rapid Isomerization of Tau. ACS Chem Neurosci 2025. [PMID: 39881547 DOI: 10.1021/acschemneuro.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at day 0, isomerization increased over time and was quantifiable for 105 proteins by day 50. Data analysis revealed that the isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our data set, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas A Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Shoff TA, Van Orman B, Onwudiwe VC, Genereux JC, Julian RR. Unusually Rapid Isomerization of Aspartic Acid in Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626870. [PMID: 39677806 PMCID: PMC11643016 DOI: 10.1101/2024.12.04.626870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Spontaneous chemical modifications in long-lived proteins can potentially change protein structure in ways that impact proteostasis and cellular health. For example, isomerization of aspartic acid interferes with protein turnover and is anticorrelated with cognitive acuity in Alzheimer's disease. However, few isomerization rates have been determined for Asp residues in intact proteins. To remedy this deficiency, we used protein extracts from SH-SY5Y neuroblastoma cells as a source of a complex, brain-relevant proteome with no baseline isomerization. Cell lysates were aged in vitro to generate isomers, and extracted proteins were analyzed by data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS). Although no Asp isomers were detected at Day 0, isomerization increased across time and was quantifiable for 105 proteins by Day 50. Data analysis revealed that isomerization rate is influenced by both primary sequence and secondary structure, suggesting that steric hindrance and backbone rigidity modulate isomerization. Additionally, we examined lysates extracted under gentle conditions to preserve protein complexes and found that protein-protein interactions often slow isomerization. Base catalysis was explored as a means to accelerate Asp isomerization due to findings of accelerated asparagine deamidation. However, no substantial rate enhancement was found for isomerization, suggesting fundamental differences in acid-base chemistry. With an enhanced understanding of Asp isomerization in proteins in general, we next sought to better understand Asp isomerization in tau. In vitro aging of monomeric and aggregated recombinant tau revealed that tau isomerizes significantly faster than any similar protein within our dataset, which is likely related to its correlation with cognition in Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas A. Shoff
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Brielle Van Orman
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Vivian C. Onwudiwe
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Joseph C. Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Miyagi M, Kiesel E, Neumbo K, Nakazawa T. Deuterium Labeling of Isoaspartic and Isoglutamic Acids for Mass Spectrometry Analysis. Anal Chem 2024; 96:3077-3086. [PMID: 38344941 PMCID: PMC10984558 DOI: 10.1021/acs.analchem.3c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
Isoaspartic acid (isoAsp) is a common protein modification that spontaneously arises from asparagine or aspartic acid and has been linked to various diseases and health conditions. However, current methods for identifying isoAsp sites in proteins often suffer from ambiguity and have not gained widespread adoption. We developed a novel method that exclusively labels isoAsp with deuterium. This method capitalizes on the unique structural characteristics of isoAsp residues, which possess a free α-carboxyl group and can form an oxazolone ring. Once the oxazolone ring forms, it facilitates racemization at the Cα-position, incorporating a deuteron from a D2O solvent. The sites of deuterium-incorporated isoAsp in proteins can be unequivocally determined by comparing the precursor and product ion masses of the peptides from proteins reacted in H2O and D2O. The effectiveness of this method has been demonstrated through its application to model proteins lysozyme and rituximab. Furthermore, we have confirmed that the isoAsp deuterium-labeling reaction efficiently labels both l- and d-isoAsp without distinction, as well as isoglutamic acid (isoGlu), for which no effective detection methods currently exist.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Evan Kiesel
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Kelao Neumbo
- Department
of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4988, United States
| | - Takashi Nakazawa
- Department
of Chemistry, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
4
|
Kuang J, Tao Y, Song Y, Chemmalil L, Mussa N, Ding J, Li ZJ. Understanding the pathway and kinetics of aspartic acid isomerization in peptide mapping methods for monoclonal antibodies. Anal Bioanal Chem 2021; 413:2113-2123. [PMID: 33543314 DOI: 10.1007/s00216-021-03176-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022]
Abstract
Isomerization of aspartic acid (Asp) in therapeutic proteins could lead to safety and efficacy concerns. Thus, accurate quantitation of various Asp isomerization along with kinetic understanding of the variant formations is needed to ensure optimal process development and sufficient product quality control. In this study, we first observed Asp-succinimide conversion in complementarity-determining regions (CDRs) Asp-Gly motif of a recombinant mAb through ion exchange chromatography, intact protein analysis by mass spectrometry, and LC-MS/MS. Then, we developed a specific peptide mapping method, with optimized sample digestion conditions, to accurately quantitate Asp-succinimide-isoAsp variants at peptide level without method-induced isomerization. Various kinetics of Asp-succinimide-isoAsp isomerization pathways were elucidated using 18O labeling followed by LC-MS analysis. Molecular modeling and molecular dynamic simulation provide additional insight on the kinetics of Asp-succinimide formation and stability of succinimide intermediate. Findings of this work shed light on the molecular construct and the kinetics of the formation of isoAsp and succinimide in peptides and proteins, which facilitates analytical method development, protein engineering, and late phase development for commercialization of therapeutic proteins.
Collapse
Affiliation(s)
- June Kuang
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| | - Yuanqi Tao
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Analytical Science Biologics, Takeda Pharmaceutical Company, Lexington, MA, 02421, USA
| | - Yuanli Song
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Process Development & Manufacture Operations, GSK, MA, 02451, Waltham, USA
| | - Letha Chemmalil
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| | - Nesredin Mussa
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
- Ultragenyx, CA, 94005, Brisbane, USA
| | - Julia Ding
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA.
| | - Zheng Jian Li
- Biologics Development Organization, Bristol-Myers Squibb Company, Devens, MA, 01434, USA
| |
Collapse
|
5
|
Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Detecting aspartate isomerization and backbone cleavage after aspartate in intact proteins by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:71-82. [PMID: 33475951 PMCID: PMC7897204 DOI: 10.1007/s10858-020-00356-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 05/14/2023]
Abstract
The monitoring of non-enzymatic post-translational modifications (PTMs) in therapeutic proteins is important to ensure drug safety and efficacy. Together with methionine and asparagine, aspartic acid (Asp) is very sensitive to spontaneous alterations. In particular, Asp residues can undergo isomerization and peptide-bond hydrolysis, especially when embedded in sequence motifs that are prone to succinimide formation or when followed by proline (Pro). As Asp and isoAsp have the same mass, and the Asp-Pro peptide-bond cleavage may lead to an unspecific mass difference of + 18 Da under native conditions or in the case of disulfide-bridged cleavage products, it is challenging to directly detect and characterize such modifications by mass spectrometry (MS). Here we propose a 2D NMR-based approach for the unambiguous identification of isoAsp and the products of Asp-Pro peptide-bond cleavage, namely N-terminal Pro and C-terminal Asp, and demonstrate its applicability to proteins including a therapeutic monoclonal antibody (mAb). To choose the ideal pH conditions under which the NMR signals of isoAsp and C-terminal Asp are distinct from other random coil signals, we determined the pKa values of isoAsp and C-terminal Asp in short peptides. The characteristic 1H-13C chemical shift correlations of isoAsp, N-terminal Pro and C-terminal Asp under standardized conditions were used to identify these PTMs in lysozyme and in the therapeutic mAb rituximab (MabThera) upon prolonged storage under acidic conditions (pH 4-5) and 40 °C. The results show that the application of our 2D NMR-based protocol is straightforward and allows detecting chemical changes of proteins that may be otherwise unnoticed with other analytical methods.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, Division of Chemistry and Bioanalytics, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| |
Collapse
|
6
|
Camperi J, Guillarme D, Stella C. Targeted Bottom-up Characterization of Recombinant Monoclonal Antibodies by Multidimensional LC/MS. Anal Chem 2020; 92:13420-13426. [DOI: 10.1021/acs.analchem.0c02780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Julien Camperi
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
7
|
Yokoyama H, Mizutani R, Noguchi S, Hayashida N. Structural and biochemical basis of the formation of isoaspartate in the complementarity-determining region of antibody 64M-5 Fab. Sci Rep 2019; 9:18494. [PMID: 31811216 PMCID: PMC6898713 DOI: 10.1038/s41598-019-54918-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
The formation of the isoaspartate (isoAsp) is one of spontaneous degradation processes of proteins, affecting their stability and activity. Here, we report for the first time the crystal structures of an antibody Fab that contains isoAsp in the complementarity-determining region (CDR), along with biochemical studies to detect isoAsp. By comparing the elution profiles of cation-exchange chromatography, it was clarified that the antibody 64M-5 Fab is converted from the normal form to isoAsp form spontaneously and time-dependently under physiological conditions. The isoAsp residue was identified with tryptic peptide mapping, N-terminal sequencing, and the protein isoaspartyl methyltransferase assay. Based on the fluorescence quenching method, the isoAsp form of 64M-5 Fab shows a one order of magnitude lower binding constant for its dinucleotide ligand dT(6-4)T than the normal form. According to the structure of the isoAsp form, the conformation of CDR L1 is changed from the normal form to isoAsp form; the loss of hydrogen bonds involving the Asn28L side-chain, and structural conversion of the β-turn from type I to type II'. The formation of isoAsp leads to a large displacement of the side chain of His27dL, and decreased electrostatic interactions with the phosphate group of dT(6-4)T. Such structural changes should be responsible for the lower affinity of the isoAsp form for dT(6-4)T than the normal form. These findings may provide insight into neurodegenerative diseases (NDDs) and related diseases caused by misfolded proteins.
Collapse
Affiliation(s)
- Hideshi Yokoyama
- 0000 0001 0660 6861grid.143643.7Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510 Japan
| | - Ryuta Mizutani
- 0000 0001 1516 6626grid.265061.6Graduate School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan
| | - Shuji Noguchi
- 0000 0000 9290 9879grid.265050.4Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 Japan
| | - Naoki Hayashida
- 0000 0001 0660 7960grid.268397.1Division of Molecular Gerontology and Anti-Ageing Medicine, Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505 Japan
| |
Collapse
|
8
|
Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs 2018; 11:45-57. [PMID: 30526254 PMCID: PMC6343770 DOI: 10.1080/19420862.2018.1548233] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Contemporary in vivo and in vitro discovery platform technologies greatly increase the odds of identifying high-affinity monoclonal antibodies (mAbs) towards essentially any desired biologically relevant epitope. Lagging discovery throughput is the ability to select for highly developable mAbs with drug-like properties early in the process. Upstream consideration of developability metrics should reduce the frequency of failures in later development stages. As the field moves towards incorporating biophysical screening assays in parallel to discovery processes, similar approaches should also be used to ensure robust chemical stability. Optimization of chemical stability in the early stages of discovery has the potential to reduce complications in formulation development and improve the potential for successful liquid formulations. However, at present, our knowledge of the chemical stability characteristics of clinical-stage therapeutic mAbs is fragmented and lacks comprehensive comparative assessment. To address this knowledge gap, we produced 131 mAbs with amino acid sequences corresponding to the variable regions of clinical-stage mAbs, subjected these to low and high pH stresses and identified the resulting modifications at amino acid-level resolution via tryptic peptide mapping. Among this large set of mAbs, relatively high frequencies of asparagine deamidation events were observed in CDRs H2 and L1, while CDRs H3, H2 and L1 contained relatively high frequencies of instances of aspartate isomerization.
Collapse
Affiliation(s)
- Xiaojun Lu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | | | | | - Tushar Jain
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Kyle Barlow
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Todd Boland
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | | | | | - Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| |
Collapse
|
9
|
YAGI Y, KAKEHI K, HAYAKAWA T, SUZUKI S. Application of Microchip Electrophoresis Sodium Dodecyl Sulfate for the Evaluation of Change of Degradation Species of Therapeutic Antibodies in Stability Testing. ANAL SCI 2014; 30:483-8. [DOI: 10.2116/analsci.30.483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Shigeo SUZUKI
- Faculty of Pharmaceutical Sciences, Kinki University
| |
Collapse
|
10
|
Yu X, Warme C, Lee D, Zhang J, Zhong W. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform. Anal Chem 2013; 85:8964-7. [PMID: 24003984 DOI: 10.1021/ac401911n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.
Collapse
Affiliation(s)
- Xiang Yu
- Structure Elucidation Group, Global Process & Analytical Chemistry, Merck Research Laboratories , 556 Morris Ave., Summit, New Jersey 07901, United States
| | | | | | | | | |
Collapse
|
11
|
Desire CT, Arrua RD, Talebi M, Lacher NA, Hilder EF. Poly(ethylene glycol)-based monolithic capillary columns for hydrophobic interaction chromatography of immunoglobulin G subclasses and variants. J Sep Sci 2013; 36:2782-92. [DOI: 10.1002/jssc.201300558] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Christopher T. Desire
- Australian Centre for Research on Separation Science (ACROSS); School of Chemistry, University of Tasmania; Tasmania Australia
| | - R. Dario Arrua
- Australian Centre for Research on Separation Science (ACROSS); School of Chemistry, University of Tasmania; Tasmania Australia
| | - Mohammad Talebi
- Australian Centre for Research on Separation Science (ACROSS); School of Chemistry, University of Tasmania; Tasmania Australia
| | - Nathan A. Lacher
- Analytical R&D; Pfizer Biotherapeutics Pharmaceutical Sciences; Chesterfield MO USA
| | - Emily F. Hilder
- Australian Centre for Research on Separation Science (ACROSS); School of Chemistry, University of Tasmania; Tasmania Australia
| |
Collapse
|
12
|
Zhang L, Patapoff T, Farnan D, Zhang B. Improving pH gradient cation-exchange chromatography of monoclonal antibodies by controlling ionic strength. J Chromatogr A 2013; 1272:56-64. [DOI: 10.1016/j.chroma.2012.11.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/18/2012] [Accepted: 11/23/2012] [Indexed: 11/25/2022]
|
13
|
Calabrese AN, Markulic K, Musgrave IF, Guo H, Zhang L, Bowie JH. Structural and activity changes in three bioactive anuran peptides when Asp is replaced by isoAsp. Peptides 2012; 38:427-36. [PMID: 23069634 DOI: 10.1016/j.peptides.2012.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The Asp and isoAsp isomers of three bioactive peptides, Crinia angiotensin 11 [APGDRIYHPF(OH)], uperin 1.1 [pEADPNAFYGLM(NH(2))] and citropin 1.1 [GLFDVIKKVASVIGGL(NH(2))] were tested for changes in (i) susceptibility towards proteolytic cleavage, (ii) activity (smooth muscle activity for Crinia angiotensin 11 and uperin 1.1 isomers, and antimicrobial activity for the two isomers of citropin 1.1), and (iii) 3D structures in water, trifluoroethanol-d(3)/water (1:1) and DPC micelles as determined by 2D nuclear magnetic resonance spectroscopy. Proteolytic cleavage with trypsin was identical for each pair of Asp/isoAsp isomers. Cleavage with chymotrypsin was the same for the Crinia angiotensin and uperin 1.1 isomeric pairs, but different for the two Asp/isoAsp citropin 1.1 isomers. Chymotrypsin cleaved at Phe3 (adjacent to Asp4) for citropin 1.1, but not at Phe3 (adjacent to isoAsp4) for isoAsp citropin 1.1. The smooth muscle activity of the isoAsp isomer of Crinia angiotensin 11 was less than that of the Asp isomer. The smooth muscle activity of isoAsp3-uperin 1.1 is greater than that of the Asp isomer at low concentration (<10(-9)M) but no different from the Asp isomer at concentrations>10(-9) M. Citropin 1.1 is a wide-spectrum antibiotic against Gram positive organisms, while the isoAsp isomer is inactive against the test pathogens Staphylococcus aureus and Bacillus subtilis. The observed changes in activity are accompanied by changes in the 3D structures of isomers as determined by 2D nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Lacroix D, Prado S, Kamoga D, Kasenene J, Zirah S, Bodo B. Unprecedented Occurrence of Isoaspartic Acid in a Plant Cyclopeptide. Org Lett 2012; 14:576-9. [DOI: 10.1021/ol203190f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Lacroix
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| | - Soizic Prado
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| | - Dennis Kamoga
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| | - John Kasenene
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| | - Séverine Zirah
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| | - Bernard Bodo
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 63 rue Buffon 75005 Paris, France, and Department of Botany, Makerere University, PO BOX 7062, Kampala, Uganda
| |
Collapse
|
15
|
Gandhi S, Ren D, Xiao G, Bondarenko P, Sloey C, Ricci MS, Krishnan S. Elucidation of Degradants in Acidic Peak of Cation Exchange Chromatography in an IgG1 Monoclonal Antibody Formed on Long-Term Storage in a Liquid Formulation. Pharm Res 2011; 29:209-24. [DOI: 10.1007/s11095-011-0536-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
|
16
|
Noguchi S. Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers 2010; 93:1003-10. [PMID: 20623666 DOI: 10.1002/bip.21514] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Under physiological conditions, the deamidation and isomerization of asparagine to isoaspartate (isoAsp) proceeds nonenzymatically via succinimide. Although a large number of proteins have been reported to contain isoAsp, information concerning the three-dimensional structure of proteins containing isoaspartate is still limited. We have crystallized isoAsp containing Ustilago sphaerogena ribonuclease U2B, and determined the crystal structure at 1.32 Å resolution. The structure revealed that the formation of isoAsp32 induces a single turn unfolding of the α-helix from Asp29 to Asp34, and the region from Asp29 to Arg35 forms a U-shaped loop structure. The electron density map shows that isoAsp32 retained the L-configuration at the C(α) atom. IsoAsp32 is in gauche conformation about a C(α)--C(β) bond, and the polypeptide chain bends by ∼90° at isoAsp32. IsoAsp32 protrudes from the surface of the protein, and the abnormal β-peptide bond in the main-chain and α-carboxylate in the side-chain is fully exposed. The structure suggests that the deamidation of the Asn and the isoAsp formation in proteins could confer immunogenicity.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Noguchi S. Isomerization mechanism of aspartate to isoaspartate implied by structures of Ustilago sphaerogena ribonuclease U2 complexed with adenosine 3'-monophosphate. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:843-9. [PMID: 20606265 DOI: 10.1107/s0907444910019621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/25/2010] [Indexed: 11/11/2022]
Abstract
Aspartates in proteins are isomerized non-enzymatically to isoaspartate via succinimide in vitro and in vivo. In order to elucidate the mechanism of isoaspartate formation within the Asp45-Glu46 sequence of Ustilago sphaerogena ribonuclease U2 based on three-dimensional structure, crystal structures of ribonuclease U2 complexed with adenosine 3'-monophosphate have been solved at 0.96 and 0.99 A resolution. The crystal structures revealed that the C(gamma) atom of Asp45 is located just beside the main-chain N atom of Glu46 and that the conformation which is suitable for succinimide formation is stabilized by a hydrogen-bond network mediated by water molecules 190, 219 and 220. These water molecules are suggested to promote the formation of isoaspartate via succinimide: in the succinimide-formation reaction water 219 receives a proton from the N atom of Glu46 as a general base and waters 190 and 220 stabilize the tetrahedral intermediate, and in the succinimide-hydrolysis reaction water 219 provides a proton for the N atom of Glu46 as a general acid. The purine-base recognition scheme of ribonuclease U2 is also discussed.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Chelius D, Ruf P, Gruber P, Plöscher M, Liedtke R, Gansberger E, Hess J, Wasiliu M, Lindhofer H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010; 2:309-19. [PMID: 20418662 DOI: 10.4161/mabs.2.3.11791] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Triomab family of trifunctional, bispecific antibodies that maintain an IgG-like shape are novel tumor targeting agents. These chimeras consist of two half antibodies, each with one light and one heavy chain, that originate from parental mouse IgG2a and rat IgG2b isotypes. This combination allows cost-effective biopharmaceutical manufacturing at an industrial scale since this specific mouse/rat isotype combination favors matching of corresponding antibody halves during production by means of quadroma technology. Whereas every Triomab family member is composed of an anti-CD3 rat IgG2b half antibody for T cell recognition, the antigen binding site presented by the mouse IgG2a isotype is exchangeable. Several Triomab antibodies have been generated that bind to tumor-associated antigens, e.g., EpCAM (catumaxomab), HER2/neu (ertumaxomab), CD20 (FBTA05), gangliosides GD2/GD3 (Ektomun), on appropriate tumor target cells associated with carcinomas, lymphomas or melanomas. Catumaxomab (Removab) was launched in Europe for treatment of malignant ascites in April 2009. Here, we report the structural and functional characterization of this product. Mass spectrometry revealed an intact mass of 150511 Dalton (Da) and 23717 Da, 24716 Da, 51957 Da and 52019 Da of the reduced and alkylated rat light chain, mouse light chain, rat heavy chain, mouse heavy chain chains, respectively. The observed masses were in agreement with the expected masses based on the amino acid sequence obtained from cDNA sequencing. The glycosylation profile was similar to other human IgG consisting of biantennary oligosaccharides with different numbers of terminal galactose. CD spectroscopy showed mainly beta-sheets secondary structure that is typical for IgG antibodies. Binding measurement revealed the unique trifunctional features of catumaxomab. Other analytical tools were used to evaluate characteristics of catumaxomab preparations, including the presence of isoforms and aggregates.
Collapse
|
19
|
Timm V, Gruber P, Wasiliu M, Lindhofer H, Chelius D. Identification and characterization of oxidation and deamidation sites in monoclonal rat/mouse hybrid antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:777-84. [DOI: 10.1016/j.jchromb.2010.01.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/15/2010] [Accepted: 01/24/2010] [Indexed: 11/26/2022]
|
20
|
Identification and measurement of isoaspartic acid formation in the complementarity determining region of a fully human monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3841-9. [PMID: 19819766 DOI: 10.1016/j.jchromb.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/29/2009] [Accepted: 09/18/2009] [Indexed: 11/23/2022]
Abstract
Isomerization plays a key role in protein degradation. This isomerization is often difficult to detect by many protein characterization methods such as SDS-PAGE, SEC, and IEF. This work shows the identification of an isomerized aspartic acid residue in the CDR2 of the heavy chain of a fully human monoclonal antibody. This isoaspartic acid increases significantly with storage at 2-8 degrees C. Hydrophobic interaction chromatography was utilized to separate the isoaspartic variant in the intact state. Mass spectrometry including peptide mapping was employed to identify and confirm the exact location of the modification. Since this modification occurs in the complementarity determining region (CDR) it was found that binding is reduced. Therefore, three different analytical methods for regular analysis of this isomerization are evaluated. These methods include peptide mapping by LC-MS, HIC, and a protein isoaspartate methyltransferase assay. It was determined that HIC is the best method to regularly assay the level of isomerization in this monoclonal antibody.
Collapse
|