1
|
Hao Y, Zhou R, Wang S, Ding X, Zhu J, Yang L, Li Y, Ding X. Quantitative determination of bromochloroacetamide in mice urine by gas chromatography combined with salting-out assisted dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37401339 DOI: 10.1039/d3ay00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bromochloroacetamide (BCAcAm) is the main haloacetamide (HAcAm) detected in drinking water in different regions and exhibits strong cytotoxicity and genotoxicity. However, there is no appropriate method for detecting BCAcAm in urine or other biological samples, and thus, the internal exposure level in the population cannot be accurately assessed. In this study, a gas chromatography-electron capture detector (GC-ECD) was combined with salting-out assisted dispersive liquid-liquid microextraction (SA-DLLME) to develop a rapid and robust method for BCAcAm detection in urine of mice continuously exposed to BCAcAm. The factors influencing the pre-treatment procedure, including the type and volume of extraction and disperser solvents, extraction and standing time, and the amount of salt, were evaluated systematically. Under the optimised conditions, the analyte achieved good linearity in the spiked concentration range of 1.00-400.00 μg L-1, and the correlation coefficient was higher than 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 μg L-1 and 0.50 μg L-1, respectively. The recoveries ranged from 84.20% to 92.17%. The detection of BCAcAm at three different calibration levels using this method afforded an intra-day precision of 1.95-4.29%, while the inter-day precision range was 5.54-9.82% (n = 6). This method has been successfully applied to monitor the concentration of BCAcAm in mouse urine in toxicity experiments and can provide technical support for assessing human internal exposure levels and health risks in later studies.
Collapse
Affiliation(s)
- Yamei Hao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Run Zhou
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Shunan Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xingwang Ding
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingying Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Li Yang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| |
Collapse
|
2
|
Li J, Zhang Y, Zhou Y, Bian Y, Hu C, Wang ZH, Feng XS. Haloacetic Acids in the Aquatic Environment. SEPARATION & PURIFICATION REVIEWS 2022. [DOI: 10.1080/15422119.2022.2141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Yu Zhou
- Department of Pharmacy, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Pei-ching 100021, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Cong Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhi-Hong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
3
|
Yang L, Chen X, She Q, Cao G, Liu Y, Chang VWC, Tang CY. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. ENVIRONMENT INTERNATIONAL 2018; 121:1039-1057. [PMID: 30392941 DOI: 10.1016/j.envint.2018.10.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The microbial safety of swimming pool waters (SPWs) becomes increasingly important with the popularity of swimming activities. Disinfection aiming at killing microbes in SPWs produces disinfection by-products (DBPs), which has attracted considerable public attentions due to their high frequency of occurrence, considerable concentrations and potent toxicity. We reviewed the latest research progress within the last four decades on the regulation, formation, exposure, and treatment of DBPs in the context of SPWs. This paper specifically discussed DBP regulations in different regions, formation mechanisms related with disinfectants, precursors and other various conditions, human exposure assessment reflected by biomarkers or epidemiological evidence, and the control and treatment of DBPs. Compared to drinking water with natural organic matter as the main organic precursor of DBPs, the additional human inputs (i.e., body fluids and personal care products) to SPWs make the water matrix more complicated and lead to the formation of more types and greater concentrations of DBPs. Dermal absorption and inhalation are two main exposure pathways for trihalomethanes while ingestion for haloacetic acids, reflected by DBP occurrence in human matrices including exhaled air, urine, blood, and plasma. Studies show that membrane filtration, advanced oxidation processes, biodegradation, thermal degradation, chemical reduction, and some hybrid processes are the potential DBP treatment technologies. The removal efficiency, possible mechanisms and future challenges of these DBP treatment methods are summarized in this review, which may facilitate their full-scale applications and provide potential directions for further research extension.
Collapse
Affiliation(s)
- Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Qianhong She
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongdi Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Victor W-C Chang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore; Department of Civil Engineering, Monash University, VIC 3800, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
4
|
Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview. Int J Hyg Environ Health 2017; 220:591-603. [DOI: 10.1016/j.ijheh.2017.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
|
5
|
Wu W, Fang Y, Zhu C, Chen S, Li T, Wu L, Bao N, Liu Y, Gu H. Fabrication of highly stable and sensitive electrochemical sensor from hemoglobin–Au nanocomposites and its analytical applications. RSC Adv 2017. [DOI: 10.1039/c7ra05808j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hemoglobin–Au nanocomposites fabrication of highly stable and sensitive electrochemical sensor.
Collapse
Affiliation(s)
- Weiping Wu
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Yuting Fang
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Chenchen Zhu
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Shiyu Chen
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Ting Li
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Lei Wu
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Ning Bao
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Yang Liu
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| | - Haiying Gu
- Institute of Analytical Chemistry for Life Science
- School of Public Health
- Nantong University
- Nantong 226019
- China
| |
Collapse
|
6
|
Cardador MJ, Gallego M. Origin of haloacetic acids in milk and dairy products. Food Chem 2016; 196:750-6. [DOI: 10.1016/j.foodchem.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/04/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
7
|
The hemoglobin-modified electrode with chitosan/Fe3O4 nanocomposite for the detection of trichloroacetic acid. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-015-3097-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Antón AP, Ferreira AMC, Pinto CG, Cordero BM, Pavón JLP. Headspace generation coupled to gas chromatography–mass spectrometry for the automated determination and quantification of endogenous compounds in urine. Aldehydes as possible markers of oxidative stress. J Chromatogr A 2014; 1367:9-15. [DOI: 10.1016/j.chroma.2014.09.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/07/2023]
|
9
|
Liu X, Wei X, Zheng W, Jiang S, Templeton MR, He G, Qu W. An optimized analytical method for the simultaneous detection of iodoform, iodoacetic acid, and other trihalomethanes and haloacetic acids in drinking water. PLoS One 2013; 8:e60858. [PMID: 23613747 PMCID: PMC3628783 DOI: 10.1371/journal.pone.0060858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/03/2013] [Indexed: 11/18/2022] Open
Abstract
An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R(2) ranges 0.9990-0.9998), low detection limits (0.0008-0.2 µg/L), low quantification limits (0.008-0.4 µg/L), and good recovery (86.6%-106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
| | - Xiao Wei
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
| | - Weiwei Zheng
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
| | - Songhui Jiang
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
| | - Michael R. Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Gengsheng He
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Nutrition and Food Hygiene, Fudan University, Shanghai, China
| | - Weidong Qu
- Key Laboratory of Public Health and Safety, Ministry of Education, Department of Environment Health, School of Public Health, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Richardson SD. Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Anal Chem 2011; 84:747-78. [DOI: 10.1021/ac202903d] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Susan D. Richardson
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, United States
| |
Collapse
|
11
|
Zhang H, Zhu J, Aranda-Rodriguez R, Feng YL. Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis–mass spectrometry: A sensitive method for measurement of ten haloacetic acids in drinking water. Anal Chim Acta 2011; 706:176-83. [PMID: 21995926 DOI: 10.1016/j.aca.2011.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/08/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
|
12
|
Cardador MJ, Gallego M. Haloacetic acids in swimming pools: swimmer and worker exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5783-5790. [PMID: 21648437 DOI: 10.1021/es103959d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
For the first time, the exposure of swimmers and workers to haloacetic acids (HAAs) in indoor and outdoor pools was evaluated through the analysis of urine samples. The subjects of this study, 49 volunteers, were male and female workers as well as swimmers (adults and children) who regularly attended an indoor pool (January-June) and an outdoor one (July and August). The results showed that HAAs appeared 20-30 min after exposure and were eliminated within 3 h. After 2 h exposure, urine samples taken from workers contained dichloroacetic (DCAA) and trichloroacetic (TCAA) acids at ~300 and ~120 ng/L levels since HAAs were aerosolized in the indoor ambient, whereas only DCAA was found in some workers' urine samples from the outdoor pool but at ~50 ng/L levels, despite the fact that the outdoor pools generally had somewhat higher levels of HAAs than the indoor pools. After 1 h swimming TCAA, DCAA and MCAA were present at concentrations of ~4400, ~2300, and ~560 ng/L, respectively, in the swimmers' urine in the indoor pool; similar results were obtained from the swimmers in the outdoor pool due to accidental ingestion. Finally, exposure estimates indicate that ingestion is the major route of exposure (~94%), followed by inhalation (~5%) and dermal contribution (~1%).
Collapse
Affiliation(s)
- M J Cardador
- Department of Analytical Chemistry, Campus of Rabanales, University of Córdoba, E-14071 Córdoba, Spain
| | | |
Collapse
|