1
|
Zhao L, Xi W, Shang Y, Gao W, Bian W, Chen X, Xue J, Xu Y, Gong P, Guo S, Gao Z. Increased plasma AACT level as an indicator of poor prognosis in patients hospitalised with community-acquired pneumonia: a multicentre prospective cohort study. BMC Infect Dis 2024; 24:946. [PMID: 39251931 PMCID: PMC11384707 DOI: 10.1186/s12879-024-09742-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Community-acquired pneumonia (CAP) is a common respiratory disease that frequently requires hospitalisation, and is a significant cause of death worldwide. This study aimed to evaluate the usefulness of alpha-1-antichymotrypsin (AACT) as a diagnostic and prognostic biomarker of CAP. METHODS We conducted a multicentre prospective cohort study in patients hospitalised with CAP. Plasma AACT levels were measured using a quantitative enzyme-linked immunosorbent assay. Receiver-operating characteristic (ROC) curves and Cox proportional hazards regression were used to assess the association between plasma AACT levels and CAP diagnosis and prognosis. RESULTS A total of 274 patients with CAP were enrolled in the study. AACT levels were elevated in patients with CAP, especially those with severe CAP and non-survivors. The area under the curve (AUC) of AACT and CRP for diagnosing CAP was 0.755 and 0.843. Cox regression showed that CURB-65 and AACT levels were independent predictors of 30-day mortality. ROC curves showed that plasma AACT levels had the highest accuracy for predicting acute respiratory distress syndrome (ARDS), with an AUC of 0.862. Combining AACT with Pneumonia Severity Index and CURB-65 significantly improved their predictive accuracy for predicting 30-day mortality. CONCLUSION Plasma AACT levels are elevated in patients with CAP, but plasma AACT level is inferior to the C-reactive protein level for diagnosing CAP. The AACT level can reliably predict the occurrence of ARDS and 30-day mortality in patients with CAP.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wenjun Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Wenjie Bian
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Jianbo Xue
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Beijing, 100035, China
| | - Pihua Gong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China.
| | - Shuming Guo
- Linfen Clinical Medicine Research Center, Linfen Central Hospital, No. 17, Jiefang West Road, Linfen, Shanxi, 041000, China.
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, No. 11, Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
2
|
Yin H, Xie J, Xing S, Lu X, Yu Y, Ren Y, Tao J, He G, Zhang L, Yuan X, Yang Z, Huang Z. Machine learning-based analysis identifies and validates serum exosomal proteomic signatures for the diagnosis of colorectal cancer. Cell Rep Med 2024; 5:101689. [PMID: 39168094 PMCID: PMC11384723 DOI: 10.1016/j.xcrm.2024.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
The potential of serum extracellular vesicles (EVs) as non-invasive biomarkers for diagnosing colorectal cancer (CRC) remains elusive. We employed an in-depth 4D-DIA proteomics and machine learning (ML) pipeline to identify key proteins, PF4 and AACT, for CRC diagnosis in serum EV samples from a discovery cohort of 37 cases. PF4 and AACT outperform traditional biomarkers, CEA and CA19-9, detected by ELISA in 912 individuals. Furthermore, we developed an EV-related random forest (RF) model with the highest diagnostic efficiency, achieving AUC values of 0.960 and 0.963 in the train and test sets, respectively. Notably, this model demonstrated reliable diagnostic performance for early-stage CRC and distinguishing CRC from benign colorectal diseases. Additionally, multi-omics approaches were employed to predict the functions and potential sources of serum EV-derived proteins. Collectively, our study identified the crucial proteomic signatures in serum EVs and established a promising EV-related RF model for CRC diagnosis in the clinic.
Collapse
Affiliation(s)
- Haofan Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China; Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jinye Xie
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Shan Xing
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaofang Lu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yu Yu
- Department of Breast Surgery, Shen Shan Medical Center, Memorial Hospital of Sun Yat-Sen University, Shanwei, Guangdong, China
| | - Yong Ren
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), PAZHOU LAB, No. 70 Yuean Road, Haizhu District, Guangzhou, Guangdong, China
| | - Jian Tao
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Guirong He
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Lijun Zhang
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Zhijian Huang
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China; Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Jin Y, Zhang Y, Huang A, Chen Y, Wang J, Liu N, Wang X, Gong Y, Wang W, Pan J. Overexpression of SERPINA3 suppresses tumor progression by modulating SPOP/NF‑κB in lung cancer. Int J Oncol 2023; 63:96. [PMID: 37417362 PMCID: PMC10552721 DOI: 10.3892/ijo.2023.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The pathogenesis mechanism of lung cancer is very complex, with high incidence and mortality. Serpin family A member 3 (SERPINA3) expression levels were reduced in the sera of patients with lung cancer and may be a candidate diagnostic and prognostic survival biomarker in lung cancer, as previously reported. However, the detailed biological functions of SERPINA3 in the pathogenesis of lung cancer remain unknown. In the present study, it was aimed to explore the effects of SERPINA3 on the occurrence of lung cancer. SERPINA3 expression was assessed using bioinformatics database analysis and experimental detection. Then, the biological effects of SERPINA3 were investigated in a cell culture system and a xenograft model of human lung cancer. The potential regulatory mechanism of SERPINA3 in lung cancer was explored by data‑independent acquisition mass spectrometry (DIA‑MS) detection and further validated by western blotting (WB). The results indicated that SERPINA3 expression levels were significantly downregulated in lung cancer tissues and cell lines. At the cellular level, it was revealed that overexpressed SERPINA3 inhibited cell growth, proliferation, migration and invasion and promoted the apoptosis of lung cancer cells. Moreover, overexpressed SERPINA3 enhanced the sensitivity of lung cancer cells to osimertinib. In vivo, a xenograft model of human lung cancer was established with BALB/c nude mice. After the injection of A549 cells, the tumor growth of the tumor‑bearing mice in the SERPINA3‑overexpressing group increased more slowly, and the tumor volume was smaller than that in the empty‑vector group. Mechanistically, a total of 65 differentially expressed proteins were identified. It was found that the speckle‑type POZ protein (SPOP) was significantly upregulated in SERPINA3‑overexpressing H157 cells using DIA‑MS detection and analysis. WB validation showed that SPOP expression increased, and NF‑kappaB (NF‑κB) p65 was inhibited in cell lines and tumor tissues of mice when SERPINA3 was overexpressed. The present findings suggest that SERPINA3 is involved in the development of lung cancer and has an antineoplastic role in lung cancer.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Ankang Huang
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Ying Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jinsong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Na Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Xianping Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215002, P.R. China
| | - Weidong Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| | - Jicheng Pan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, Hubei 435002
| |
Collapse
|
4
|
Jin Y, Wang W, Wang Q, Zhang Y, Zahid KR, Raza U, Gong Y. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int 2022; 22:156. [PMID: 35439996 PMCID: PMC9019971 DOI: 10.1186/s12935-022-02572-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The glycoprotein alpha-1-antichymotrypsin (AACT), a serine protease inhibitor, is mainly synthesized in the liver and then secreted into the blood and is involved in the acute phase response, inflammation, and proteolysis. The dysregulation of AACT and its glycosylation levels are associated with tumor progression and recurrence, and could be used as a biomarker for tumor monitoring. In this review, we summarized the expression level, glycosylation modification, and biological characteristics of AACT during inflammation, neurodegenerative or other elderly diseases, and tumorigenesis, as well as, focused on the biological roles of AACT in cancer. The aberrant expression of AACT in cancer might be due to genetic alterations and/or immune by bioinformatics analysis. Moreover, AACT may serve as a diagnostic or prognostic biomarker or therapeutic target in tumors. Furthermore, we found that the expression of AACT was associated with the overall survival of patients with human cancers. Decreased AACT expression was associated with poor survival in patients with liver cancer, increased AACT expression was associated with shorter survival in patients with pancreatic cancer, and decreased AACT expression was associated with shorter survival in patients with early lung cancer. The review confirmed the key roles of AACT in tumorigenesis, suggesting that the glycoprotein AACT may serve as a biomarker for tumor diagnosis and prognosis, and could be a potential therapeutic target for human diseases.
Collapse
Affiliation(s)
- Yanxia Jin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Weidong Wang
- College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China.
| | - Qiyun Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Yueyang Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, No. 11 Cihu Road, Huangshi District, Huangshi, 435002, China
| | - Kashif Rafiq Zahid
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science and Oceanography, Carson International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), PWD Campus, Rawalpindi, Pakistan
| | - Yongsheng Gong
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, No.26 Daoqian Street, Suzhou, 215002, China.
| |
Collapse
|
5
|
Zhang Z, Cheng X, Jiang H, Gu J, Yin Y, Shen Z, Xu C, Pu Z, Li JB, Xu G. Quantitative proteomic analysis of glycosylated proteins enriched from urine samples with magnetic ConA nanoparticles identifies potential biomarkers for small cell lung cancer. J Pharm Biomed Anal 2021; 206:114352. [PMID: 34509662 DOI: 10.1016/j.jpba.2021.114352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023]
Abstract
Lung cancer has high morbidity and mortality and small cell lung cancer (SCLC) is a highly invasive malignant tumor with a very unfavorable survival rate. Early diagnosis and treatment can result in better prognosis for the SCLC patients but current diagnostic methods are either invasive or incapable for large-scale screen. Therefore, discovering biomarkers for early diagnosis of SCLC is of importance. In this work, we covalently coupled Concanavalin A (ConA) to functionalized magnetic nanoparticles to obtain magnetic ConA-nanoparticles (ConA-NPs) for the enrichment of glycosylated proteins. We then purified glycosylated proteins in 36 urine samples from 9 healthy controls, 9 SCLC patients, 9 lung adenocarcinoma (LUAD) patients, and 9 lung squamous cell carcinoma (LUSC) patients. The purified glycosylated proteins were digested and analyzed by LC-MS/MS for identification and quantification. Among the 398 identified proteins, 20, 15, and 1 glycosylated protein(s), respectively, were upregulated in the urine of SCLC, LUAD, and LUSC patients. Immunoblotting experiments further demonstrated that cathepsin C and transferrin were significantly upregulated in the ConA-NP purified urine of SCLC patients. This work suggests that glycosylated cathepsin C and transferrin might be able to serve as potential biomarkers for the noninvasive diagnosis of SCLC patients.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xinyu Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jingyu Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yunfei Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhijia Shen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; Medical School of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Changgang Xu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Sanders KL, Edwards JL. Nano-liquid chromatography-mass spectrometry and recent applications in omics investigations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4404-4417. [PMID: 32901622 PMCID: PMC7530103 DOI: 10.1039/d0ay01194k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Liquid chromatography coupled to mass spectrometry (LC-MS) is one of the most powerful tools in identifying and quantitating molecular species. Decreasing column diameter from the millimeter to micrometer scale is now a well-developed method which allows for sample limited analysis. Specific fabrication of capillary columns is required for proper implementation and optimization when working in the nanoflow regime. Coupling the capillary column to the mass spectrometer for electrospray ionization (ESI) requires reduction of the subsequent emitter tip. Reduction of column diameter to capillary scale can produce improved chromatographic efficiency and the reduction of emitter tip size increased sensitivity of the electrospray process. This improved sensitivity and ionization efficiency is valuable in analysis of precious biological samples where analytes vary in size, ion affinity, and concentration. In this review we will discuss common approaches and challenges in implementing nLC-MS methods and how the advantages can be leveraged to investigate a wide range of biomolecules.
Collapse
|
7
|
Husi H, Fernandes M, Skipworth RJ, Miller J, Cronshaw AD, Fearon KCH, Ross JA. Identification of diagnostic upper gastrointestinal cancer tissue type-specific urinary biomarkers. Biomed Rep 2019; 10:165-174. [PMID: 30906545 PMCID: PMC6423495 DOI: 10.3892/br.2019.1190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
Several potential urinary biomarkers exhibiting an association with upper gastrointestinal tumour growth have been previously identified, of which S100A6, S100A9, rabenosyn-5 and programmed cell death 6-interacting protein (PDCD6IP) were further validated and found to be upregulated in malignant tumours. The cancer cohort from our previous study was subclassified to assess whether distinct molecular markers can be identified for each individual cancer type using a similar approach. Urine samples from patients with cancers of the stomach, oesophagus, oesophagogastric junction or pancreas were analysed by surface-enhanced laser desorption/ionization-time-of-flight mass spectrometry using both CM10 and IMAC30 (Cu2+-complexed) chip types and LC-MS/MS-based mass spectrometry after chromatographic enrichment. This was followed by protein identification, pattern matching and validation by western blotting. We found 8 m/z peaks with statistical significance for the four cancer types investigated, of which m/z 2447 and 2577 were identified by pattern matching as fragments of cathepsin-B (CTSB) and cystatin-B (CSTB); both molecules are indicative of pancreatic cancer. Additionally, we observed a potential association of upregulated α-1-antichymotrypsin with pancreatic and gastric cancers, of PDCD6IP, vitelline membrane outer layer protein 1 homolog (VMO1) and triosephosphate isomerase (TPI1) with oesophagogastric junctional cancers, and of complement C4-A, prostatic acid phosphatase, azurocidin and histone-H1 with oesophageal cancer. Furthermore, the potential pancreatic cancer biomarkers CSTB and CTSB were validated independently by western blotting. Therefore, the present study identified two new potential urinary biomarkers that appear to be associated with pancreatic cancer. This may provide a simple, non-invasive screening test for use in the clinical setting.
Collapse
Affiliation(s)
- Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness IV2 3JH, UK.,BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK.,School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Marco Fernandes
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J Skipworth
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Janice Miller
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Andrew D Cronshaw
- School of Biological Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Kenneth C H Fearon
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James A Ross
- School of Clinical Sciences and Community Health, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
8
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Identification of GlcNAcylated alpha-1-antichymotrypsin as an early biomarker in human non-small-cell lung cancer by quantitative proteomic analysis with two lectins. Br J Cancer 2016; 114:532-44. [PMID: 26908325 PMCID: PMC4782198 DOI: 10.1038/bjc.2015.348] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) is the main type of lung cancer with high mortality rates in worldwide. There is a need to identify better biomarkers to detect NSCLC at an early stage as this will improve therapeutic effect and patient survival rates. Methods: Two lectins (AAL/AAGL and AAL2/AANL), which specifically bind to tumour-related glycan antigens, were first used to enrich serum glycoproteins from the serum of early NSCLC patients, benign lung diseases subjects and healthy individuals. The samples were investigated by using iTRAQ labelling and LC-MS/MS. Results: A total of 53 differentially expressed proteins were identified by quantitative proteomics and four glycoproteins (AACT, AGP1, CFB and HPX) were selected for further verification by western blotting. Receiver operating characteristic analysis showed AACT was the best candidate for early NSCLC diagnosis of the four proteins, with 94.1% sensitivity in distinguishing early tumour Stage (IA+IB) from tumour-free samples (healthy and benign samples, HB). The GlcNAcylated AACT was further detected by lectin-based ELISA and has better advantage in clinical application than total AACT. The GlcNAcylated AACT can effectively differentiate Stage I from HB samples with an AUC of 0.908 and 90.9% sensitivity at a specificity of 86.2%. A combination of GlcNAcylated AACT and carcinoembryonic antigen (CEA) was able to effectively differing Stage I from HB samples (AUC=0.914), which significantly improve the specificity of CEA. The combination application also has the better clinical diagnostic efficacy in distinguishing cancer (NSCLC) from HB samples than CEA or GlcNAcylated AACT used alone, and yielded an AUC of 0.817 with 93.1% specificity. Conclusions: Our findings suggest that the GlcNAcylated AACT will be a promising clinical biomarker in diagnosis of early NSCLC.
Collapse
|
10
|
Mazzone PJ, Wang XF, Lim S, Choi H, Jett J, Vachani A, Zhang Q, Beukemann M, Seeley M, Martino R, Rhodes P. Accuracy of volatile urine biomarkers for the detection and characterization of lung cancer. BMC Cancer 2015; 15:1001. [PMID: 26698840 PMCID: PMC4690321 DOI: 10.1186/s12885-015-1996-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/11/2015] [Indexed: 12/26/2022] Open
Abstract
Background The mixture of volatile organic compounds in the headspace gas of urine may be able to distinguish lung cancer patients from relevant control populations. Methods Subjects with biopsy confirmed untreated lung cancer, and others at risk for developing lung cancer, provided a urine sample. A colorimetric sensor array was exposed to the headspace gas of neat and pre-treated urine samples. Random forest models were trained from the sensor output of 70 % of the study subjects and were tested against the remaining 30 %. Models were developed to separate cancer and cancer subgroups from control, and to characterize the cancer. An additional model was developed on the largest clinical subgroup. Results 90 subjects with lung cancer and 55 control subjects participated. The accuracies, reported as C-statistics, for models of cancer or cancer subgroups vs. control ranged from 0.795 – 0.917. A model of lung cancer vs. control built using only subjects from the largest available clinical subgroup (30 subjects) had a C-statistic of 0.970. Models developed and tested to characterize cancer histology, and to compare early to late stage cancer, had C-statistics of 0.849 and 0.922 respectively. Conclusions The colorimetric sensor array signature of volatile organic compounds in the urine headspace may be capable of distinguishing lung cancer patients from clinically relevant controls. The incorporation of clinical phenotypes into the development of this biomarker may optimize its accuracy.
Collapse
Affiliation(s)
- Peter J Mazzone
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | - Xiao-Feng Wang
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | - Sung Lim
- Metabolomx, Mountainview, CA, USA.
| | - Humberto Choi
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | - James Jett
- National Jewish Health, Denver, CO, USA.
| | - Anil Vachani
- University of Pennsylvania, Philadelphia, PA, USA.
| | - Qi Zhang
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | - Mary Beukemann
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | - Meredith Seeley
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave., A90, Cleveland, OH, 44195, USA.
| | | | | |
Collapse
|
11
|
Analysis of protein-protein interactions in MCF-7 and MDA-MB-231 cell lines using phthalic acid chemical probes. Int J Mol Sci 2014; 15:20770-88. [PMID: 25402641 PMCID: PMC4264195 DOI: 10.3390/ijms151120770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 01/20/2023] Open
Abstract
Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.
Collapse
|
12
|
Li QK, Gabrielson E, Askin F, Chan DW, Zhang H. Glycoproteomics using fluid-based specimens in the discovery of lung cancer protein biomarkers: promise and challenge. Proteomics Clin Appl 2014; 7:55-69. [PMID: 23112109 DOI: 10.1002/prca.201200105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Lung cancer is the leading cancer in the United States and worldwide. In spite of the rapid progression in personalized treatments, the overall survival rate of lung cancer patients is still suboptimal. Over the past decade, tremendous efforts have been focused on the discovery of protein biomarkers to facilitate the early detection and monitoring of lung cancer progression during treatment. In addition to tumor tissues and cancer cell lines, a variety of biological material has been studied. Particularly in recent years, studies using fluid-based specimen or so-called "fluid-biopsy" specimens have progressed rapidly. Fluid specimens are relatively easier to collect than tumor tissue, and they can be repeatedly sampled during the disease progression. Glycoproteins are the major content of fluid specimens and have long been recognized to play fundamental roles in many physiological and pathological processes. In this review, we focus the discussion on recent advances of glycoproteomics, particularly in the identification of potential glyco protein biomarkers using fluid-based specimens in lung cancer. The purpose of this review is to summarize current strategies, achievements, and perspectives in the field. This insight will highlight the discovery of tumor-associated glycoprotein biomarkers in lung cancer and their potential clinical applications.
Collapse
Affiliation(s)
- Qing Kay Li
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
13
|
Viglio S, Stolk J, Iadarola P, Giuliano S, Luisetti M, Salvini R, Fumagalli M, Bardoni A. Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004-2013. Proteomes 2014; 2:18-52. [PMID: 28250368 PMCID: PMC5302730 DOI: 10.3390/proteomes2010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 01/14/2023] Open
Abstract
To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004-2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders.
Collapse
Affiliation(s)
- Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden 2333, The Netherlands.
| | - Paolo Iadarola
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Serena Giuliano
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
- Faculty of Science "Parc Valrose", University of Nice "Sophia Antipolis", FRE 3472 CNRS, LP2M Nice, France.
| | - Maurizio Luisetti
- Department of Molecular Medicine, Division of Pneumology, University of Pavia & IRCCS Policlinico San Matteo, Via Taramelli 5, Pavia 27100, Italy.
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Marco Fumagalli
- Department of Biology and Biotechnologies, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| | - Anna Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3/B, Pavia 27100, Italy.
| |
Collapse
|
14
|
Phthalic acid chemical probes synthesized for protein-protein interaction analysis. Int J Mol Sci 2013; 14:12914-30. [PMID: 23797655 PMCID: PMC3742165 DOI: 10.3390/ijms140712914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022] Open
Abstract
Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis.
Collapse
|
15
|
Pastor MD, Nogal A, Molina-Pinelo S, Carnero A, Paz-Ares L. Proteomic biomarkers in lung cancer. Clin Transl Oncol 2013; 15:671-82. [DOI: 10.1007/s12094-013-1034-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022]
|
16
|
Li H, Li J, Wang Y, Yang T. Proteomic analysis of effluents from perfused human heart for transplantation: identification of potential biomarkers for ischemic heart damage. Proteome Sci 2012; 10:21. [PMID: 22443514 PMCID: PMC3349588 DOI: 10.1186/1477-5956-10-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
Background Biomarkers released from the heart at early stage of ischemia are very important to diagnosis of ischemic heart disease and salvage myocytes from death. Known specific markers for blood tests including CK-MB, cardiac troponin T (cTnT) and cardiac troponin I (cTnI) are released after the onset of significant necrosis instead of early ischemia. Thus, they are not good biomarkers to diagnose myocardial injury before necrosis happens. Therefore, in this study, we performed proteomic analysis on effluents from perfused human hearts of donors at different ischemic time. Results After global ischemia for 0 min, 30 min and 60 min at 4°C, effluents from five perfused hearts were analyzed respectively, by High performance liquid chromatography-Chip-Mass spectrometry (HPLC-Chip-MS) system. Total 196 highly reliable proteins were identified. 107 proteins were identified at the beginning of ischemia, 174 and 175 proteins at ischemic 30 min and ischemic 60 min, respectively. With the exception of cardiac troponin I and T, all known biomarkers for myocardial ischemia were detected in our study. However, there were four glycolytic enzymes and two targets of matrix metalloproteinase released significantly from the heart when ischemic time was increasing. These proteins were L-lactate dehydrogenase B(LDHB), glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate isomerase (GPI), phosphoglycerate mutase 2 (PGAM2), gelsolin and isoform 8 of titin. PGAM2, LDHB and titin were measured with enzyme-linked immunosorbent assays kits. The mean concentrations of LDHB and PGAM2 in samples showed an increasing trend when ischemic time was extending. In addition, 33% identified proteins are involved in metabolism. Protein to protein interaction network analysis showed glycolytic enzymes, such as isoform alpha-enolase of alpha-enolase, isoform 1 of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase, had more connections than other proteins in myocardial metabolism during ischemia. Conclusion It is the first time to use effluents of human perfused heart to study the proteins released during myocardial ischemia by HPLC-Chip-MS system. There might be many potential biomarkers for mild ischemic injury in myocardium, especially isoform 8 of titin and M-type of PGAM2 that are more specific in the cardiac tissue than in the others. Furthermore, glycolysis is one of the important conversions during early ischemia in myocardium. This finding may provide new insight into pathology and biology of myocardial ischemia, and potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | | | | | | |
Collapse
|
17
|
Houbart V, Cobraiville G, Lecomte F, Debrus B, Hubert P, Fillet M. Development of a nano-liquid chromatography on chip tandem mass spectrometry method for high-sensitivity hepcidin quantitation. J Chromatogr A 2011; 1218:9046-54. [PMID: 22055522 DOI: 10.1016/j.chroma.2011.10.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
Microfluidic LC systems present undeniable advantages over classical LC in terms of sensitivity. Hepcidin, a peptide marker of clinical disorders linked to iron metabolism, was used as model to demonstrate peptide quantification potentialities of LC-chip coupled to a nanoelectrospray source ion trap mass spectrometer in an aqueous sample. First, stable isotope labelled hepcidin was chosen as internal standard and gradient as well as sample compositions were optimised using design of experiments as development tool. The method was then prevalidated using accuracy profiles in order to select the most appropriate response function and to confirm the ability of the technique to quantify low hepcidin concentration. A reliable and very sensitive quantitation method was finally obtained using this integrated microfluidic technology. Indeed, good results with respect to accuracy, trueness and precision were achieved, as well as a very low limit of quantitation (0.07 ng/ml). Method suitability of nano-LC on chip tandem mass spectrometry for hepcidin quantitation was also demonstrated in complex media such as human plasma.
Collapse
Affiliation(s)
- V Houbart
- Laboratory of Analytical Pharmaceutical Chemistry, Department of Pharmacy, CIRM, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|