1
|
A validated UPLC-MS/MS assay of E7090, a novel selective inhibitor of fibroblast growth factor receptors, in human plasma and urine. J Pharm Biomed Anal 2023; 225:115216. [PMID: 36610174 DOI: 10.1016/j.jpba.2022.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
E7090, a novel fibroblast growth factor receptors inhibitor, is currently under clinical development for the treatment of patients with solid tumors. Assays for the determination of E7090 concentrations in human plasma and urine have been developed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to evaluate pharmacokinetic profiles of E7090. E7090 and a deuterated labeled internal standard (IS) were extracted from 50 μL of plasma by protein precipitation. In quantification of E7090 in urine, 50 μL of urine samples fortified with 15 μL of ethanol (10:3, v/v) to minimize nonspecific binding of E7090 to urine containers were subjected to the assay without extraction. E7090 and the IS were separated by chromatography on a reverse phase column and were detected by selected reaction monitoring in the positive ion mode. The lower limit of quantification was set at 1 ng/mL and E7090 was quantifiable from 1 to 3000 ng/mL in plasma and urine. Accuracy and precision were measured during the reproducibility assessments and were within ± 7.0% and 9.1%, respectively, in plasma and within ± 7.0% and 5.8%, respectively, in urine, indicating sufficient reproducibility. The validated methods were successfully applied to the quantification of E7090 in human plasma and urine to support a Phase-1 clinical trial.
Collapse
|
2
|
Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem 2021; 16:199-215. [PMID: 32734692 PMCID: PMC7821181 DOI: 10.1002/cmdc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10-3 s-1 , an on-rate of 1.01×106 M-1 s-1 , and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Lars Allmendinger
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
3
|
Bi H, Guo Z, Jia X, Liu H, Ma L, Xue L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020; 16:68. [PMID: 32451742 DOI: 10.1007/s11306-020-01666-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Metabolomics provides measurement of numerous metabolites in human samples, which can be a useful tool in clinical research. Blood and urine are regarded as preferred subjects of study because of their minimally invasive collection and simple preprocessing methods. Adhering to standard operating procedures is an essential factor in ensuring excellent sample quality and reliable results. AIM OF REVIEW In this review, we summarize the studies about the impacts of various preprocessing factors on metabolomics studies involving clinical blood and urine samples in order to provide guidance for sample collection and preprocessing. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical information is important for sample grouping and data analysis which deserves attention before sample collection. Plasma and serum as well as urine samples are appropriate for metabolomics analysis. Collection tubes, hemolysis, delay at room temperature, and freeze-thaw cycles may affect metabolic profiles of blood samples. Collection time, time between sampling and examination, contamination, normalization strategies, and storage conditions may alter analysis results of urine samples. Taking these collection and preprocessing factors into account, this review provides suggestions of standard sample preprocessing.
Collapse
Affiliation(s)
- Hai Bi
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China
| | - Zhengyang Guo
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
| | - Xiao Jia
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China.
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China.
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China.
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Dilly Penchala S, Alagaratnam J, Challenger E, Amara A, Else L, Winston A, Khoo S. The development and validation of a novel LC-MS/MS method for the quantification of cenicriviroc in human plasma and cerebrospinal fluid. Biomed Chromatogr 2019; 34:e4711. [PMID: 31629375 DOI: 10.1002/bmc.4711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023]
Abstract
A high-performance liquid chromatography tandem mass spectrometric method was developed and validated for cenicriviroc (CVC) quantification in human plasma and cerebrospinal fluid (CSF). The method involved precipitation with acetonitrile and injecting supernatants onto the column. Separation was achieved on an XBridge C18 column with a gradient elution of 0.1% formic acid in water and acetonitrile. Analyte detection was conducted in positive ion mode using selected reaction monitoring. The m/z transitions were: CVC (697.3 → 574.3) and CVC-d7 (704.4 → 574.3). Calibration curve ranged from 5 to 1000 ng/mL for plasma and from 0.241 to 15.0 ng/mL for CSF. The intra- and inter-day precision and accuracy were <15% for both plasma and CSF across four different concentrations. CVC recovery from plasma and artificial CSF was >90%. The method was utilized for the measurement of patients' plasma and CSF samples taking a dose of 50, 150 and 300 mg q.d.
Collapse
Affiliation(s)
| | - Jasmini Alagaratnam
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | | | - Alieu Amara
- Department of Pharmacology, University of Liverpool, Liverpool, UK
| | - Laura Else
- Department of Pharmacology, University of Liverpool, Liverpool, UK
| | - Alan Winston
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Saye Khoo
- Department of Pharmacology, University of Liverpool, Liverpool, UK.,Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
5
|
Yao X, Song L, Liu Y, Wang H, Liu J, Jiang J, Liu D, Hu P. A high-performance liquid chromatography-tandem mass spectrometry method for the determination of lifrafenib, a novel RAF kinase and EGFR inhibitor, in human plasma and urine and its application in clinical pharmacokinetic study. J Pharm Biomed Anal 2019; 166:20-29. [PMID: 30599278 DOI: 10.1016/j.jpba.2018.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/23/2018] [Indexed: 10/27/2022]
Abstract
Lifirafenib (BGB-283), a dual inhibitor trageting BRAF kinase and EGFR, showed favorable efficacy and safety in treating patients with different cancer types harboring mutations in BRAF, KRAS and NRAS. In order to support the clinical pharmacokinetic study, a sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to quantify lifirafenib concentration in human plasma and urine. Plasma samples were purified using protein precipitation. Urine samples were pre-treated by adding tween 80 with the purpose of preventing non-specific adsorption, then extracted by centrifugation. Chromatographic separation was achieved on Phenomenex Luna C18 column with a gradient elution. The mass detection was performed using electrospray ionization (ESI) source under multiple reaction monitoring (MRM) in positive ionization mode. The method was fully validated, and the result of inter-assay and intra-assay precisions were less than 15% and the accuracy within the scope of ±15%. The linear range for plasma and urine covered from 10 to 10,000 ng/mL and 1 to 200 ng/mL, respectively, with correlation coefficients of 0.99. The validation for matrix effect, recovery, stability and carryover were met the acceptance criteria. The method showed robust and sensitive, it successfully fulfilled the requirement of clinical pharmacokinetic study of lifirafenib in Chinese patients with locally advanced or metastatic solid tumors.
Collapse
Affiliation(s)
- Xueting Yao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Ling Song
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Yang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Huanhuan Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Jie Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Ji Jiang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China
| | - Dongyang Liu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China.
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100032, China; Beijing Key Laboratory of Clinical PK and PD Investigation for Innovative Drugs, Beijing 100032, China.
| |
Collapse
|
6
|
Reimerová P, Stariat J, Bavlovič Piskáčková H, Jansová H, Roh J, Kalinowski DS, Macháček M, Šimůnek T, Richardson DR, Štěrbová-Kovaříková P. Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials. Anal Bioanal Chem 2019; 411:2383-2394. [PMID: 30820631 DOI: 10.1007/s00216-019-01681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Abstract
Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016. However, this agent exhibited non-specific binding on filtration membranes and had intrinsic chelation activity, which precluded standard PPB methods. In this study, using a simple and fast procedure, we prepared novel SPME fibers for extraction of DpC based on a metal-free, silicon string support, covered with C18 sorbent. Reproducibility of the preparation process was demonstrated by the percent relative standard deviation (RSD) of ≤ 9.2% of the amount of DpC extracted from PBS by several independently prepared fibers. The SPME procedure was optimized by evaluating extraction and desorption time profiles. Suitability of the optimized protocol was verified by examining reproducibility, linearity, and recovery of DpC extracted from PBS or plasma. All samples extracted by SPME were analyzed using an optimized and validated UHPLC-MS/MS method. The developed procedure was applied to the in vitro determination of PPB of DpC at two clinically relevant concentrations (500 and 1000 ng/mL). These studies showed that DpC is highly bound to plasma proteins (PPB ≥ 88%) and this did not differ significantly between both concentrations tested. This investigation provides novel data in the applicability of SPME for the determination of PPB of chelators, as well as useful information for the clinical development of DpC. Graphical abstract.
Collapse
Affiliation(s)
- Petra Reimerová
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Ján Stariat
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Hana Jansová
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Miloslav Macháček
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Neiens P, De Simone A, Ramershoven A, Höfner G, Allmendinger L, Wanner KT. Development and validation of an LC-ESI-MS/MS method for the quantification of D-84, reboxetine and citalopram for their use in MS Binding Assays addressing the monoamine transporters hDAT, hSERT and hNET. Biomed Chromatogr 2018; 32:e4231. [PMID: 29500932 DOI: 10.1002/bmc.4231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/10/2018] [Accepted: 02/26/2018] [Indexed: 02/05/2023]
Abstract
MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far.
Collapse
Affiliation(s)
- Patrick Neiens
- Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Angela De Simone
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Rimini, Italy
| | - Anna Ramershoven
- Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg Höfner
- Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lars Allmendinger
- Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus T Wanner
- Department Pharmazie - Zentrum für Pharmaforschung, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Kang L, Connolly TM, Weng N, Jian W. LC-MS/MS quantification of 7α-hydroxy-4-cholesten-3-one (C4) in rat and monkey plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1064:49-55. [PMID: 28915417 DOI: 10.1016/j.jchromb.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 11/26/2022]
Abstract
7α-hydroxy-4-cholesten-3-one (C4) is an oxidative enzymatic product of cholesterol metabolism via cholesterol 7α-hydroxylase, an enzyme also known as cholesterol 7-alpha-monooxygenase or cytochrome P450 7A1 (CYP7A1). C4 is a stable intermediate in the rate limiting pathway of bile acid biosynthesis. Previous studies showed that plasma C4 levels correlated with CYP7A1 enzymatic activity and could serve as a biomarker for bile acid synthesis. Here we developed and qualified a simple and robust high-throughput method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify C4 in rat and monkey plasma. As C4 being an endogenous compound, this method used calibration standards in 50/50: acetonitrile/water (v/v). In order to mimic the incurred samples, quality control samples were prepared in the authentic plasma. Stable isotope labeled C4 (C4-d7) was used as the internal standard. The sample volume for analysis was 20μL and the sample preparation method was protein precipitation with acetonitrile. The average endogenous C4 concentrations, from 10 different lots of rat and monkey plasma, were 53.0±16.5ng/mL and 6.8±5.6ng/mL, respectively. Based on these observed endogenous C4 levels, the calibration curve ranges were established at 1-200ng/mL and 0.5-100ng/mL for rat assay and monkey assay, respectively. The method was qualified with acceptable accuracy, precision, linearity, and specificity. Matrix effect, recovery, and plasma stability of bench-top, freeze-thaw, and long-term frozen storage were also evaluated. The method has been successfully applied to pre-clinical studies.
Collapse
Affiliation(s)
- Lijuan Kang
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Thomas M Connolly
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Naidong Weng
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA
| | - Wenying Jian
- Janssen Research & Development, Johnson & Johnson, 1400 McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
9
|
LC–MS/MS determination of alectinib and its major human metabolite M4 in human urine: prevention of nonspecific binding. Bioanalysis 2017; 9:459-468. [DOI: 10.4155/bio-2016-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Alectinib (Alecensa®) is an anaplastic lymphoma kinase inhibitor for the treatment of anaplastic lymphoma kinase positive non-small-cell lung cancer, and M4 is its major pharmacologically active metabolite. To characterize the pharmacokinetics and excretion of alectinib and M4 in human urine, a bioanalytical method was required. Results: An LC–MS/MS method using supported liquid extraction was developed for the determination of alectinib and M4 in human urine over the concentration range 0.5–500 ng/ml. Accuracy ranged from 92.0 to 112.2% and precision (CV) was below 9.6%. Conclusion: The method was successfully employed to determine alectinib and M4 concentrations in urine samples from a clinical mass balance study. Addition of the surfactant Tween-20 to urine prevented nonspecific binding of the analytes.
Collapse
|
10
|
Boyacı E, Pawliszyn J. Micelle Assisted Thin-Film Solid Phase Microextraction: A New Approach for Determination of Quaternary Ammonium Compounds in Environmental Samples. Anal Chem 2014; 86:8916-21. [PMID: 25148600 DOI: 10.1021/ac5015673] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ezel Boyacı
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| | - Janusz Pawliszyn
- Department
of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L
3G1, Canada
| |
Collapse
|
11
|
Case studies: the impact of nonanalyte components on LC–MS/MS-based bioanalysis: strategies for identifying and overcoming matrix effects. Bioanalysis 2013; 5:2409-41. [DOI: 10.4155/bio.13.201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Achieving sufficient selectivity in bioanalysis is critical to ensure accurate quantitation of drugs and metabolites in biological matrices. Matrix effects most classically refer to modification of ionization efficiency of an analyte in the presence of matrix components. However, nonanalyte or matrix components present in samples can adversely impact the performance of a bioanalytical method and are broadly considered as matrix effects. For the current manuscript, we expand the scope to include matrix elements that contribute to isobaric interference and measurement bias. These three categories of matrix effects are illustrated with real examples encountered. The causes, symptoms, and suggested strategies and resolutions for each form of matrix effects are discussed. Each case is presented in the format of situation/action/result to facilitate reading.
Collapse
|
12
|
Larsen EKU, Larsen NB. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems. LAB ON A CHIP 2013; 13:669-75. [PMID: 23254780 DOI: 10.1039/c2lc40750g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes including hydrophobic and hydrophilic drugs (0.23 < ClogP < 8.95), small and large proteins (insulin, albumin, IgG), and DNA. The coating is shown to limit the adsorption of even highly hydrophobic drugs (ClogP > 8) in their pharmaceutically relevant concentration range ≤100 nM. The low adsorption is mediated by photochemical conjugation, where polyethylene glycol (PEG) polymers in aqueous solution are covalently bound to the surface by UV illumination of dissolved benzophenone and a functionalized PEG. The method can coat the interior of polymer systems made from a range of materials commonly used in microanalytical systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI).
Collapse
Affiliation(s)
- Esben Kjær Unmack Larsen
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, Ørsteds Plads 345E, DK-2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
13
|
Fernández-Peralbo M, Luque de Castro M. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Nirogi R, Kandikere V, Bhyrapuneni G, Benade V, Saralaya R, Irappanavar S, Muddana N, Ajjala DR. Approach to reduce the non-specific binding in microdialysis. J Neurosci Methods 2012; 209:379-87. [DOI: 10.1016/j.jneumeth.2012.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 11/24/2022]
|