1
|
Huang P, Okoshi T, Mizuno S, Hiroe A, Tsuge T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Biosci Biotechnol Biochem 2018; 82:1615-1623. [DOI: 10.1080/09168451.2018.1473027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.
Collapse
Affiliation(s)
- Pengtao Huang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Takaya Okoshi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Ayaka Hiroe
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Chemistry for life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
2
|
Kavitha G, Rengasamy R, Inbakandan D. Polyhydroxybutyrate production from marine source and its application. Int J Biol Macromol 2018; 111:102-108. [DOI: 10.1016/j.ijbiomac.2017.12.155] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 12/28/2017] [Indexed: 11/17/2022]
|
3
|
Albuquerque PB, Malafaia CB. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Int J Biol Macromol 2018; 107:615-625. [DOI: 10.1016/j.ijbiomac.2017.09.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023]
|
4
|
Ge L, Tan GYA, Wang L, Chen CL, Li L, Tan SN, Wang JY. Determination of monomeric composition in polyhydroxyalkanoates by liquid chromatography coupled with on-line mass spectrometry and off-line nuclear magnetic resonance. Talanta 2015; 146:107-13. [PMID: 26695241 DOI: 10.1016/j.talanta.2015.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are commercially-valuable biocompatible and biodegradable polymers with many potential medical, pharmaceutical and other industrial applications. The analysis of PHA monomeric composition is especially challenging due to the broad chemical diversity of PHA monomers and lack of analytical standards to represent the chemically-diverse PHA monomer constituents. In this study, a novel strategy based on on-line liquid chromatography-mass spectrometry (LC-MS) and off-line liquid chromatography-nuclear magnetic resonance (LC-NMR) was established to quantify seven PHA monomers with available standards and used to elucidate the structures of unknown PHA monomers. The strategy was successfully applied for the determination of monomeric composition in bacterial PHAs isolated from Pseudomonads cultivated on different carbon sources after hydrolysis. The results of this work demonstrated that the newly-developed strategy was efficient, repeatable, and could have good potential to be employed for detailed analysis of PHA monomeric composition.
Collapse
Affiliation(s)
- Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Giin-Yu Amy Tan
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Lin Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Chia-Lung Chen
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Ling Li
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Swee Ngin Tan
- Natural Sciences and Science Education Academic Group, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore.
| | - Jing-Yuan Wang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|