1
|
Yan Y, Hemmler D, Schmitt-Kopplin P. HILIC-MS for Untargeted Profiling of the Free Glycation Product Diversity. Metabolites 2022; 12:metabo12121179. [PMID: 36557217 PMCID: PMC9783660 DOI: 10.3390/metabo12121179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glycation products produced by the non-enzymatic reaction between reducing carbohydrates and amino compounds have received increasing attention in both food- and health-related research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing glycation products already exist, only a few common advanced glycation end products (AGEs) are usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glycation products are still lacking. The aim of this study was to establish a method for simultaneously characterizing a wide range of free glycation products using the untargeted metabolomics approach. In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation products were chosen for systematic method optimization, rather than using a limited number of standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns (zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds. The zwitterionic columns showed better performance than the other two types of columns in terms of the detected feature numbers and detected free glycation products. Two zwitterionic columns were selected for further mobile phase optimization. For both columns, the neutral mobile phase provided better peak separation, whereas the acidic condition provided a higher quality of chromatographic peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to discover glycation products in terms of providing good peak shapes and maintaining comparable compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation product features despite interference from the complex endogenous metabolites from biological matrices, which showed great application potential for glycation research and can help discover new biologically important glycation products.
Collapse
Affiliation(s)
- Yingfei Yan
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| | - Daniel Hemmler
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Comprehensive Foodomics Platform, Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence: (Y.Y.); (P.S.-K.)
| |
Collapse
|
2
|
Hosseinkhani F, Huang L, Dubbelman AC, Guled F, Harms AC, Hankemeier T. Systematic Evaluation of HILIC Stationary Phases for Global Metabolomics of Human Plasma. Metabolites 2022; 12:metabo12020165. [PMID: 35208239 PMCID: PMC8875576 DOI: 10.3390/metabo12020165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Polar hydrophilic metabolites have been identified as important actors in many biochemical pathways. Despite continuous improvement and refinement of hydrophilic interaction liquid chromatography (HILIC) platforms, its application in global polar metabolomics has been underutilized. In this study, we aimed to systematically evaluate polar stationary phases for untargeted metabolomics by using HILIC columns (neutral and zwitterionic) that have been exploited widely in targeted approaches. To do so, high-resolution mass spectrometry was applied to thoroughly investigate selectivity, repeatability and matrix effect at three pH conditions for 9 classes of polar compounds using 54 authentic standards and plasma matrix. The column performance for utilization in untargeted metabolomics was assessed using plasma samples with diverse phenotypes. Our results indicate that the ZIC-c HILIC column operated at neutral pH exhibited several advantages, including superior performance for different classes of compounds, better isomer separation, repeatability and high metabolic coverage. Regardless of the column type, the retention of inorganic ions in plasma leads to extensive adduct formation and co-elution with analytes, which results in ion-suppression as part of the overall plasma matrix effect. In ZIC-c HILIC, the sodium chloride ion effect was particularly observed for amino acids and amine classes. Successful performance of HILIC for separation of plasma samples with different phenotypes highlights this mode of separation as a valuable approach in global profiling of plasma sample and discovering the metabolic changes associated with health and disease.
Collapse
|
3
|
Erngren I, Smit E, Pettersson C, Cárdenas P, Hedeland M. The Effects of Sampling and Storage Conditions on the Metabolite Profile of the Marine Sponge Geodia barretti. Front Chem 2021; 9:662659. [PMID: 34041223 PMCID: PMC8141568 DOI: 10.3389/fchem.2021.662659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Geodia barretti is a deep-sea marine sponge common in the north Atlantic and waters outside of Norway and Sweden. The sampling and subsequent treatment as well as storage of sponges for metabolomics analyses can be performed in different ways, the most commonly used being freezing (directly upon collection or later) or by storage in solvent, commonly ethanol, followed by freeze-drying. In this study we therefore investigated different sampling protocols and their effects on the detected metabolite profiles in liquid chromatography-mass spectrometry (LC-MS) using an untargeted metabolomics approach. Sponges (G. barretti) were collected outside the Swedish west coast and pieces from three sponge specimens were either flash frozen in liquid nitrogen, frozen later after the collection cruise, stored in ethanol or stored in methanol. The storage solvents as well as the actual sponge pieces were analyzed, all samples were analyzed with hydrophilic interaction liquid chromatography as well as reversed phase liquid chromatography with high resolution mass spectrometry using full-scan in positive and negative ionization mode. The data were evaluated using multivariate data analysis. The highest metabolite intensities were found in the frozen samples (flash frozen and frozen after sampling cruise) as well as in the storage solvents (methanol and ethanol). Metabolites extracted from the sponge pieces that had been stored in solvent were found in very low intensity, since the majority of metabolites were extracted to the solvents to a high degree. The exception being larger peptides and some lipids. The lowest variation between replicates were found in the flash frozen samples. In conclusion, the preferred method for sampling of sponges for metabolomics was found to be immediate freezing in liquid nitrogen. However, freezing the sponge samples after some time proved to be a reliable method as well, albeit with higher variation between the replicates. The study highlights the importance of saving ethanol extracts after preservation of specimens for biology studies; these valuable extracts could be further used in studies of natural products, chemosystematics or metabolomics.
Collapse
Affiliation(s)
- Ida Erngren
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Eva Smit
- BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Curt Pettersson
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Improved Sensitivity in Hydrophilic Interaction Liquid Chromatography-Electrospray-Mass Spectrometry after Removal of Sodium and Potassium Ions from Biological Samples. Metabolites 2021; 11:metabo11030170. [PMID: 33804267 PMCID: PMC7999259 DOI: 10.3390/metabo11030170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Inorganic ions, such as sodium and potassium, are present in all biological matrices and are sometimes also added during sample preparation. However, these inorganic ions are known to hamper electrospray ionization -mass spectrometry (ESI-MS) applications, especially in hydrophilic interaction liquid chromatography (HILIC) where they are retained and can be detected as adducts and clusters with mobile phase components or analytes. The retention of inorganic ions leads to co-elution with analytes and as a result ion-suppression, extensive adduct formation and problems with reproducibility. In the presented work, a sample preparation method using cation exchange solid phase extraction (SPE) was developed to trap Na+ and K+ ions from human blood plasma and head and neck cancer cells for the analysis of small cationic, anionic as well as neutral organic analytes. The investigated analytes were small, hydrophilic compounds typically in focus in metabolomics studies. The samples were analyzed using full-scan HILIC-ESI-quadrupole time of flight (QTOF)-MS with an untargeted, screening approach. Method performance was evaluated using multivariate data analysis as well as relative quantifications, spiking of standards to evaluate linearity of response and post-column infusion to study ion-suppression. In blood plasma, the reduction of sodium and potassium ion concentration resulted in improved sensitivity increased signal intensity for 19 out of 28 investigated analytes, improved linearity of response, reduced ion-suppression and reduced cluster formation as well as adduct formation. Thus, the presented method has significant potential to improve data quality in metabolomics studies.
Collapse
|
5
|
Müller K, Zahn D, Frömel T, Knepper TP. Matrix effects in the analysis of polar organic water contaminants with HILIC-ESI-MS. Anal Bioanal Chem 2020; 412:4867-4879. [PMID: 32130441 DOI: 10.1007/s00216-020-02548-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/27/2023]
Abstract
Matrix effects have been shown to be very pronounced and highly variable in the analysis of mobile chemicals, which may severely exacerbate accurate quantification. These matrix effects, however, are still scarcely studied in combination with hydrophilic interaction liquid chromatography (HILIC) and for very polar chemicals. In this study, the matrix effects of 26 polar model analytes were investigated in enriched drinking water, wastewater treatment plant effluent and solutions of inorganic salts, utilizing post-column infusion of the analytes into a HILIC-electrospray ionisation (ESI)-high-resolution mass spectrometry system. These experiments revealed the occurrence of structure-specific and unspecific matrix effects. The unspecific matrix effects were mainly observed in positive ESI polarity and predominantly coincided with a high ion count, resulting in ion suppression of all analytes. Thus, the excess charge is hypothesized to be the limiting factor in ion formation. Structure-specific matrix effects were more pronounced in negative ESI polarity and even structurally similar compounds were observed to react entirely differently: perfluoroalkyl carboxylic acids were suppressed, while perfluoroalkane sulfonic acids were simultaneously enhanced. These matrix effects were traced back to inorganic anions and cations, which eluted over a significant fraction of the chromatographic run time with this setup. Hence, it was concluded that inorganic ions are a main cause for matrix effects in the analysis of mobile chemicals utilizing HILIC. Graphical abstract.
Collapse
Affiliation(s)
- Kathrin Müller
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany
| | - Daniel Zahn
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany.
| | - Tobias Frömel
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany
| | - Thomas P Knepper
- Hochschule Fresenius gem. GmbH, Limburger Str. 2, 65510, Idstein, Germany
| |
Collapse
|
6
|
Erngren I, Haglöf J, Engskog MKR, Nestor M, Hedeland M, Arvidsson T, Pettersson C. Adduct formation in electrospray ionisation-mass spectrometry with hydrophilic interaction liquid chromatography is strongly affected by the inorganic ion concentration of the samples. J Chromatogr A 2019; 1600:174-182. [PMID: 31047661 DOI: 10.1016/j.chroma.2019.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC)/ electrospray ionisation-mass spectrometry (ESI-MS) has gained interest for the analysis of polar analytes in bioanalytical applications in recent years. However, ESI-MS is prone to adduct formation of analytes. In contrast to reversed phase chromatography, small inorganic ions have retention in HILIC, i.e. analytes and inorganic ions may co-elute, which could influence the adduct formation. In the present paper, it was demonstrated that the co-elution of sodium ions or potassium ions and analytes in HILIC/ESI-MS affect the adduct formation and that different concentrations of sodium ions and potassium ions in biological samples could have an impact on the quantitative response of the respective adducts as well as the quantitative response of the protonated adduct. The co-elution also lead to cluster formation of analytes and sodium formate or potassium formate, causing extremely complicated spectra. In analytical applications using HILIC/ESI-MS where internal standards are rarely used or not properly matched, great care needs to be taken to ensure minimal variation of inorganic ion concentration between samples. Moreover, the use of alkali metal ion adducts as quantitative target ions in relative quantitative applications should be made with caution if proper internal standards are not used.
Collapse
Affiliation(s)
- Ida Erngren
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mikael Hedeland
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; National Veterinary Institute (SVA), Department of Chemistry, Environment and Feed Hygiene, Uppsala, Sweden
| | - Torbjörn Arvidsson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Medical Product Agency, Uppsala, Sweden
| | - Curt Pettersson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Wen Y, Yuan X, Qin F, Zhao L, Xiong Z. Development and validation of a hydrophilic interaction ultra-high-performance liquid chromatography-tandem mass spectrometry method for rapid simultaneous determination of 19 free amino acids in rat plasma and urine. Biomed Chromatogr 2018; 33:e4387. [PMID: 30238479 DOI: 10.1002/bmc.4387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high-throughput hydrophilic interaction UHPLC-MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one-step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra-day and inter-day precisions were within 15.0% and the accuracy ranged from -12.8 to 12.7%. The hydrophilic interaction UHPLC-MS/MS method was rapid, accurate and high-throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.
Collapse
Affiliation(s)
- Yongqing Wen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xuemei Yuan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Longshan Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Zhili Xiong
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
8
|
Elmsjö A, Haglöf J, Engskog MKR, Erngren I, Nestor M, Arvidsson T, Pettersson C. Method selectivity evaluation using the co-feature ratio in LC/MS metabolomics: Comparison of HILIC stationary phase performance for the analysis of plasma, urine and cell extracts. J Chromatogr A 2018; 1568:49-56. [PMID: 29789170 DOI: 10.1016/j.chroma.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Evaluation of the chromatographic separation in metabolomics studies has primarily been done using preselected sets of standards or by counting the number of detected features. An alternative approach is to calculate each feature's co-feature ratio, which is a combined selectivity measurement for the separation (i.e. extent of co-elution) and the MS-signal (i.e. adduct formation and in-source fragmentation). The aim of this study was to demonstrate how the selectivity of different HILIC stationary phases can be evaluated using the co-feature ratio approach. The study was based on three sample types; plasma, urine and cell extracts. Samples were analyzed on an UHPLC-ESI-Q-ToF system using an amide, a bare silica and a sulfobetaine stationary phase. For each feature, a co-feature ratio was calculated and used for multivariate analysis of the selectivity differences between the three stationary phases. Unsupervised PCA models indicated that the co-feature ratios were highly dependent on type of stationary phase. For several metabolites a 15-30 fold difference in the co-feature ratio were observed between the stationary phases. Observed selectivity differences related primarily to the retention patterns of unwanted matrix components such as inorganic salts (detected as salt clusters), glycerophospholipids, and polyethylene glycols. These matrix components affected the signal intensity of co-eluting metabolites by interfering with the ionization efficiency and/or their adduct formation. Furthermore, the retention pattern of these matrix components had huge influence on the number of detected features. The co-feature ratio approach has successfully been applied for evaluation of the selectivity performance of three HILIC stationary phases. The co-feature ratio could therefore be used in metabolomics for developing selective methods fit for their purpose, thereby avoiding generic analytical approaches, which are often biased, as type and amount of interfering matrix components are metabolome dependent.
Collapse
Affiliation(s)
- Albert Elmsjö
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden.
| | - Jakob Haglöf
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Mikael K R Engskog
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Ida Erngren
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Torbjörn Arvidsson
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden; Medical Product Agency, Uppsala, Sweden
| | - Curt Pettersson
- Dept. Medicinal Chemistry, Division of Analytical Pharmaceutical Chemistry, Uppsala University, Sweden
| |
Collapse
|
9
|
Desfontaine V, Capetti F, Nicoli R, Kuuranne T, Veuthey JL, Guillarme D. Systematic evaluation of matrix effects in supercritical fluid chromatography versus liquid chromatography coupled to mass spectrometry for biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079:51-61. [DOI: 10.1016/j.jchromb.2018.01.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
|
10
|
A HILIC-UHPLC–MS/MS untargeted urinary metabonomics combined with quantitative analysis of five polar biomarkers on osteoporosis rats after oral administration of Gushudan. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:40-49. [DOI: 10.1016/j.jchromb.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/03/2023]
|
11
|
Nováková L, Pavlík J, Chrenková L, Martinec O, Červený L. Current antiviral drugs and their analysis in biological materials-Part I: Antivirals against respiratory and herpes viruses. J Pharm Biomed Anal 2017; 147:400-416. [PMID: 28755849 DOI: 10.1016/j.jpba.2017.06.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
This review article is the first in the series providing an overview of currently used antiviral drugs and presenting contemporary approaches to their analysis. Large number of available antivirals and their structural variability makes this task very challenging. Trying to cover this topic comprehensively while maintaining reasonable size of the article, the review is presented in two parts. For the purpose of the overall review, antivirals were divided into four groups: (i) antivirals against herpes viruses, (ii) antivirals against respiratory viruses, (iii) antivirals against hepatitis viruses, and (iv) antivirals against HIV. Part one is devoted to the groups (i) and (ii) and also concerns the key features of the bioanalytical method. The mechanisms of action of antivirals against respiratory and herpes viruses and their use in clinical practice are briefly outlined, and the analytical methods for selected representatives of each class are described in more detail. The methods developed for the determination of drugs from these classes mostly include conventional procedures. In contrast, current trends such as UHPLC are used rarely and proper method validation based on requirements of bioanalytical guidelines can be often considered insufficient.
Collapse
Affiliation(s)
- Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jakub Pavlík
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucia Chrenková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ondřej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lukáš Červený
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
12
|
A simplified LC-MS/MS method for rapid determination of cycloserine in small-volume human plasma using protein precipitation coupled with dilution techniques to overcome matrix effects and its application to a pharmacokinetic study. Anal Bioanal Chem 2017; 409:3025-3032. [PMID: 28224247 DOI: 10.1007/s00216-017-0249-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023]
Abstract
Matrix effects have been a major concern when developing LC-MS/MS methods for quantitative bioanalysis of cycloserine. Sample handling procedures including solid phase extraction or derivatization have been reported previously by researchers to overcome matrix effects of cycloserine. In the present study, the possibility of reducing matrix effects of cycloserine using protein precipitation coupled with dilution techniques was investigated. Plasma samples were pretreated by protein precipitation with methanol followed by a 40-fold dilution with methanol-water (50:50, v/v). The analyte and the internal standard (mildronate) were chromatographed on a Shim-pack XR-ODS (100 mm × 2.0 mm, 2.2 μm) column using methanol-0.01% formic acid (70:30, v/v) as mobile phase and detected by multiple reaction monitoring mode via positive electrospray ionization. The total run time was only 2 min per sample. The suppression of cycloserine response was reduced with the matrix effects ranging between 80.5 and 87.9%. A lower limit of quantification (LLOQ) of 0.300 μg/mL was achieved using only 10 μL of plasma. The intra- and inter-day precisions were less than 4.8% and the accuracy ranged from -2.6 to 6.6%. The method was successfully applied to a pharmacokinetic study of cycloserine in 30 healthy Chinese male subjects after oral administration of a single dose of cycloserine at 250, 500 and 750 mg under fasting conditions. The newly developed method is simpler, faster, cost-effective, and more robust than previously reported LC-MS/MS methods.
Collapse
|
13
|
Periat A, Kohler I, Thomas A, Nicoli R, Boccard J, Veuthey JL, Schappler J, Guillarme D. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry. J Chromatogr A 2016; 1439:42-53. [DOI: 10.1016/j.chroma.2015.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/18/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023]
|
14
|
Carmical J, Brown S. The impact of phospholipids and phospholipid removal on bioanalytical method performance. Biomed Chromatogr 2016; 30:710-20. [DOI: 10.1002/bmc.3686] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Jennifer Carmical
- Bill Gatton College of Pharmacy, East Tennessee State University; Department of Pharmaceutical Sciences; Johnson City TN 37614 USA
| | - Stacy Brown
- Bill Gatton College of Pharmacy, East Tennessee State University; Department of Pharmaceutical Sciences; Johnson City TN 37614 USA
| |
Collapse
|
15
|
Matrix effect explained by unexpected formation of peptide in acidified plasma. Bioanalysis 2015; 7:295-306. [PMID: 25697188 DOI: 10.4155/bio.14.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Peak distortion and strong signal enhancement was observed when applying a bioanalytical method based on mixed-mode SPE, hydrophilic interaction chromatography and ESI-MS to acidified rabbit plasma samples. RESULTS High-resolution ESI-MS and N-terminal peptide sequencing revealed a peptide NFQNAL, which was confirmed by H/D exchange ESI-MS. CONCLUSION The peptide causing the observed matrix effect was formed by enzymatic degradation of serum albumin at pH 3. Degradation required both acidification and presence of other plasma constituents in addition to albumin to take place. The degree of signal enhancement correlated to the level of NFQNAL in the ion source as measured by MS, with a maximal enhancement factor of 3 at intermediate levels of NFQNAL. The interference was eliminated by changing to another type of hydrophilic interaction chromatography column.
Collapse
|
16
|
Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices. Bioanalysis 2015; 7:2927-45. [DOI: 10.4155/bio.15.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Hydrophilic interaction chromatography (HILIC) is being increasingly used for the analysis of hydrophilic compounds in biological matrices. The complexity of biological samples demands adequate sample preparation procedures, specifically adjusted for HILIC analyses. Currently, most bioanalytical assays are performed on bare silica and ZIC-HILIC columns. Trends in HILIC for bioanalysis include smaller particle sizes and miniaturization of the analytical column. For complex biological samples, multidimensional techniques can separate and identify more compounds than 1D separations. The high volatility of the mobile phase, the added separation power and high sensitivity make MS the detection method of choice for bioanalysis using HILIC, although other detectors such as evaporative light scattering detection, charged aerosol detection and nuclear magnetic resonance have been reported.
Collapse
|
17
|
Nováková L, Havlíková L, Vlčková H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.08.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Recent advances in hydrophilic interaction chromatography for quantitative analysis of endogenous and pharmaceutical compounds in plasma samples. Bioanalysis 2014; 6:2421-39. [DOI: 10.4155/bio.14.173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is an increasing need for new analytical methods that can handle a large number of analytes in complex matrices. Hydrophilic interaction chromatography (HILIC) has recently been demonstrated as an important supplement to reversed-phase liquid chromatography for polar analytes, particularly endogenous compounds. With the increasing popularity of HILIC, progressively more polar phases with diverse functional groups have been developed. In addition, the coupling of HILIC to mass spectrometry offers the advantages of improved sensitivity by employing an organic-rich mobile phase. This article reviews recent applications of HILIC for the analysis of endogenous and pharmaceutical compounds in plasma samples. Furthermore, based on recent studies, we provide a discussion of column selection, sample pretreatment for HILIC analysis, and detection sensitivity.
Collapse
|
19
|
Koch W, Forcisi S, Lehmann R, Schmitt-Kopplin P. Sensitivity improvement in hydrophilic interaction chromatography negative mode electrospray ionization mass spectrometry using 2-(2-methoxyethoxy)ethanol as a post-column modifier for non-targeted metabolomics. J Chromatogr A 2014; 1361:209-16. [PMID: 25160955 DOI: 10.1016/j.chroma.2014.07.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
The application of ammonia acetate buffered liquid chromatography (LC) eluents is known to concomitantly lead to ion suppression when electrospray ionization mass spectrometry (ESI-MS) detection is used. In negative ESI mode, post column infusion of 2-(2-methoxyethoxy)ethanol (2-MEE) was shown in the literature to help to compensate this adverse effect occurring in reversed phase liquid chromatography mass spectrometry (RP-LC-MS) analyses. Here a setup of direct infusion and hydrophilic interaction chromatography (HILIC) post-column infusion experiments was established in order to investigate systematically the beneficial effects of 2-MEE. We demonstrate that, 2-MEE can help to improve ESI-MS sensitivity in HILIC too and reveal analyte structure specific behaviors. Our study indicates that 2-MEE especially improves ESI response for small and polar molecules. The ESI response of stable isotope labeled amino acids spiked into biological matrices increases up to 50-fold (i.e. D5-l-glutamic acid) when post column infusion of 2-MEE is applied. A non-targeted analysis of a pooled urine sample via HILIC-ESI-QTOF-MS supports this hypothesis. In direct infusion, the combined application of an ammonia acetate buffered solution together with 2-MEE results in an improved ESI response compared to a non-buffered solution. We observed up to 60-fold increased ESI response of l-lysine. We propose this effect is putatively caused by the formation of smaller ESI droplets and stripping of positive charge from ESI droplets due to evaporation of acetic acid anions. In summary, post-column infusion of 2-MEE especially enhances ESI response of small and polar molecules. Therefore it can be regarded as a valuable add-on in targeted or non-targeted metabolomic HILIC-MS studies since this method sets a focus on this molecule category.
Collapse
Affiliation(s)
- Wendelin Koch
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, Neuherberg D-85764, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan D-85354, Germany; German Center for Diabetes (DZD), Munchen, Germany.
| | - Sara Forcisi
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, Neuherberg D-85764, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan D-85354, Germany; German Center for Diabetes (DZD), Munchen, Germany
| | - Rainer Lehmann
- Division of Clinical Chemistry and Pathobiochemistry (Central Laboratory), University Hospital Tübingen, 72076 Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes (DZD), Munchen, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environment Health, Neuherberg D-85764, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan D-85354, Germany; German Center for Diabetes (DZD), Munchen, Germany.
| |
Collapse
|
20
|
Periat A, Kohler I, Bugey A, Bieri S, Versace F, Staub C, Guillarme D. Hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry: Effect of electrospray ionization source geometry on sensitivity. J Chromatogr A 2014; 1356:211-20. [DOI: 10.1016/j.chroma.2014.06.066] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 11/27/2022]
|
21
|
HILIC UHPLC-MS/MS for fast and sensitive bioanalysis: accounting for matrix effects in method development. Bioanalysis 2014; 5:2345-57. [PMID: 24066620 DOI: 10.4155/bio.13.217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Matrix effects are considered to be a main obstacle of quantitative bioanalytical LC-MS/MS methods. Therefore it is often required to minimize them in order to increase method reliability. HILIC has been referenced as one of possible approaches. However, there is a lack of experimental evidence in scientific literature so far. METHODOLOGY Matrix effects were evaluated using spiked serum samples after SPE and protein precipitation prior to UHPLC-ESI-MS/MS. Chromatography was performed in both HILIC and reversed-phase mode. The influence of the matrix effects on the signal response was assessed using a set of 34 compounds of pharmaceutical interest and post-extraction addition approach. RESULTS The advantages and drawbacks of the HILIC and reversed-phase chromatographic modes were compared and discussed in detail. CONCLUSION HILIC demonstrated the potential to reduce the occurrence of matrix effects when a more thorough sample pretreatment procedure such as SPE was applied.
Collapse
|