1
|
Antonio Hernández Martínez S, Tang P, Parra-Saldívar R, Melchor-Martínez EM, Czekster CM. Immobilized Nucleoside 2'-Deoxyribosyltransferases from Extremophiles for Nucleoside Biocatalysis. ACS OMEGA 2025; 10:1067-1076. [PMID: 39829460 PMCID: PMC11740241 DOI: 10.1021/acsomega.4c08364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
The synthesis of nucleosides is crucial for pharmaceutical and biotechnological applications, acting as drugs and as essential building blocks for numerous therapeutic agents. However, most enzymes employed in nucleoside biocatalysis are not recycled, possess limited stability, and have strict substrate selection for ribonucleosides or 2'deoxyribonucleosides. We employed 2'-deoxyribonucleoside transferase (NDT) enzymes from thermophilic and psychrophilic bacteria to demonstrate they can be immobilized to enhance specific activity, stability, and recyclability. NDT enzymes from Chroococcidiopsis thermalis (CtNDT), and Bacillus psychrosaccharolyticus (BpNDT) were immobilized by covalent attachment to chitosan beads. A double mutant of CtNDT, capable of generating 3'deoxyribonucleosides, showed remarkable and increased stability after immobilization compared to the same enzyme in the solution. Furthermore, we demonstrated the recyclability of immobilized biocatalysts, with a 10-fold improvement in reaction yield over 20 consecutive cycles, highlighting the practicality and sustainability of the developed immobilization method. We used our strategy to produce a pharmaceutically relevant 3'deoxyribonucleoside (2-fluoro-3'-deoxyadenosine). This highlights the importance of efficient immobilization techniques to enhance the catalytic properties of NDT enzymes, expanding their utility in biocatalysis.
Collapse
Affiliation(s)
| | - Peijun Tang
- School
of
Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Roberto Parra-Saldívar
- Facultad
de Medicina, Universidad Autónoma
de Nuevo León, Monterrey, Nuevo León 64460, México
- Megan Centre
of Applied Mycology (MCAM), Faculty of Engineering and Applied Sciences, Cranfield University,
Cranfield, Bedford MK43 0AL, U.K.
| | | | | |
Collapse
|
2
|
Thiele I, Yehia H, Krausch N, Birkholz M, Cruz Bournazou MN, Sitanggang AB, Kraume M, Neubauer P, Kurreck A. Production of Modified Nucleosides in a Continuous Enzyme Membrane Reactor. Int J Mol Sci 2023; 24:ijms24076081. [PMID: 37047056 PMCID: PMC10094030 DOI: 10.3390/ijms24076081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Nucleoside analogues are important compounds for the treatment of viral infections or cancers. While (chemo-)enzymatic synthesis is a valuable alternative to traditional chemical methods, the feasibility of such processes is lowered by the high production cost of the biocatalyst. As continuous enzyme membrane reactors (EMR) allow the use of biocatalysts until their full inactivation, they offer a valuable alternative to batch enzymatic reactions with freely dissolved enzymes. In EMRs, the enzymes are retained in the reactor by a suitable membrane. Immobilization on carrier materials, and the associated losses in enzyme activity, can thus be avoided. Therefore, we validated the applicability of EMRs for the synthesis of natural and dihalogenated nucleosides, using one-pot transglycosylation reactions. Over a period of 55 days, 2′-deoxyadenosine was produced continuously, with a product yield >90%. The dihalogenated nucleoside analogues 2,6-dichloropurine-2′-deoxyribonucleoside and 6-chloro-2-fluoro-2′-deoxyribonucleoside were also produced, with high conversion, but for shorter operation times, of 14 and 5.5 days, respectively. The EMR performed with specific productivities comparable to batch reactions. However, in the EMR, 220, 40, and 9 times more product per enzymatic unit was produced, for 2′-deoxyadenosine, 2,6-dichloropurine-2′-deoxyribonucleoside, and 6-chloro-2-fluoro-2′-deoxyribonucleoside, respectively. The application of the EMR using freely dissolved enzymes, facilitates a continuous process with integrated biocatalyst separation, which reduces the overall cost of the biocatalyst and enhances the downstream processing of nucleoside production.
Collapse
|
3
|
Industrial potential of the enzymatic synthesis of nucleoside analogs: existing challenges and perspectives. Curr Opin Biotechnol 2022; 78:102829. [PMID: 36332344 DOI: 10.1016/j.copbio.2022.102829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022]
Abstract
Nucleoside phosphorylases have progressed from an enzymatic curiosity to a viable synthetic tool. However, despite the recent advances in nucleoside phosphorylase-catalyzed nucleoside synthesis, the widespread application of these enzymes in industrial processes is still lacking. We attribute this gap to three key challenges, which are outlined in this short review. To address these persistent obstacles, we believe that biocatalytic nucleoside synthesis needs to embrace interdisciplinary partnerships with the fields of organic chemistry, process engineering, and flow chemistry.
Collapse
|
4
|
Benítez‐Mateos AI, Paradisi F. Sustainable Flow-Synthesis of (Bulky) Nucleoside Drugs by a Novel and Highly Stable Nucleoside Phosphorylase Immobilized on Reusable Supports. CHEMSUSCHEM 2022; 15:e202102030. [PMID: 34726353 PMCID: PMC9298701 DOI: 10.1002/cssc.202102030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Indexed: 05/02/2023]
Abstract
The continuous synthesis of valuable nucleoside drugs was achieved in up to 99 % conversion by using a novel halotolerant purine nucleoside phosphorylase from Halomonas elongata (HePNP). HePNP showed an unprecedented tolerance to DMSO, usually required for substrate solubility, and could be immobilized on agarose microbeads through disulfide bonds, via a genetically fused Cystag. This covalent yet reversible binding chemistry showcased the reusability of agarose microbeads in a second round of enzyme immobilization with high reproducibility, reducing waste and increasing the sustainability of the process. Finally, the flow synthesis of a Nelarabine analogue (6-O-methyl guanosine) was optimized to full conversion on a 10 mm scale within 2 min residence time, obtaining the highest space-time yield (89 g L-1 h-1 ) reported to date. The cost-efficiency of the system was further enhanced by a catch-and-release strategy that allowed to recover and recirculate the excess of sugar donor from the downstream water waste.
Collapse
Affiliation(s)
- Ana I. Benítez‐Mateos
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Francesca Paradisi
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
5
|
Wouters B, Currivan S, Abdulhussain N, Hankemeier T, Schoenmakers P. Immobilized-enzyme reactors integrated into analytical platforms: Recent advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
|
7
|
de Moraes MC, Cardoso CL, Cass QB. Solid-Supported Proteins in the Liquid Chromatography Domain to Probe Ligand-Target Interactions. Front Chem 2019; 7:752. [PMID: 31803714 PMCID: PMC6873629 DOI: 10.3389/fchem.2019.00752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ligand-target interactions play a central role in drug discovery processes because these interactions are crucial in biological systems. Small molecules-proteins interactions can regulate and modulate protein function and activity through conformational changes. Therefore, bioanalytical tools to screen new ligands have focused mainly on probing ligand-target interactions. These interactions have been evaluated by using solid-supported proteins, which provide advantages like increased protein stability and easier protein extraction from the reaction medium, which enables protein reuse. In some specific approaches, precisely in the ligand fishing assay, the bioanalytical method allows the ligands to be directly isolated from complex mixtures, including combinatorial libraries and natural products extracts without prior purification or fractionation steps. Most of these screening assays are based on liquid chromatography separation, and the binding events can be monitored through on-line or off-line methods. In the on-line approaches, solid supports containing the immobilized biological target are used as chromatographic columns most of the time. Several terms have been used to refer to such approaches, such as weak affinity chromatography, high-performance affinity chromatography, on-flow activity assays, and high-performance liquid affinity chromatography. On the other hand, in the off-line approaches, the binding event occurs outside the liquid chromatography system and may encompass affinity and activity-based assays in which the biological target is immobilized on magnetic particles or monolithic silica, among others. After the incubation step, the supernatant or the eluate from the binding assay is analyzed by liquid chromatography coupled to various detectors. Regardless of the selected bioanalytical approach, the use of solid supported proteins has significantly contributed to the development of automated and reliable screening methods that enable ligands to be isolated and characterized in complex matrixes without purification, thereby reducing costs and avoiding time-laborious steps. This review provides a critical overview of recently developed assays.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Laboratório SINCROMA, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói, Brazil
| | - Carmen Lucia Cardoso
- Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Quezia Bezerra Cass
- Separare, Departamento de Química, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Hatano A, Wakana H, Terado N, Kojima A, Nishioka C, Iizuka Y, Imaizumi T, Uehara S. Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01063g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unnatural nucleosides are attracting interest as potential diagnostic tools, medicines, and functional molecules.
Collapse
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Hiroyuki Wakana
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Nanae Terado
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Aoi Kojima
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Chisato Nishioka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Yu Iizuka
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Takuya Imaizumi
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| | - Sanae Uehara
- Department of Chemistry
- Shibaura Institute of Technology
- Saitama
- Japan
| |
Collapse
|
9
|
Cattaneo G, Ubiali D, Calleri E, Rabuffetti M, Höfner GC, Wanner KT, De Moraes MC, Martinelli LK, Santos DS, Speranza G, Massolini G. Development, validation and application of a 96-well enzymatic assay based on LC-ESI-MS/MS quantification for the screening of selective inhibitors against Mycobacterium tuberculosis purine nucleoside phosphorylase. Anal Chim Acta 2016; 943:89-97. [DOI: 10.1016/j.aca.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
|
10
|
Lapponi MJ, Rivero CW, Zinni MA, Britos CN, Trelles JA. New developments in nucleoside analogues biosynthesis: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations. Molecules 2015; 21:E44. [PMID: 26729076 PMCID: PMC6274182 DOI: 10.3390/molecules21010044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Enzymatic ribosylation of fluorescent 8-azapurine derivatives, like 8-azaguanine and 2,6-diamino-8-azapurine, with purine-nucleoside phosphorylase (PNP) as a catalyst, leads to N9, N8, and N7-ribosides. The final proportion of the products may be modulated by point mutations in the enzyme active site. As an example, ribosylation of the latter substrate by wild-type calf PNP gives N7- and N8-ribosides, while the N243D mutant directs the ribosyl substitution at N9- and N7-positions. The same mutant allows synthesis of the fluorescent N7-β-d-ribosyl-8-azaguanine. The mutated form of the E. coli PNP, D204N, can be utilized to obtain non-typical ribosides of 8-azaadenine and 2,6-diamino-8-azapurine as well. The N7- and N8-ribosides of the 8-azapurines can be analytically useful, as illustrated by N7-β-d-ribosyl-2,6-diamino-8-azapurine, which is a good fluorogenic substrate for mammalian forms of PNP, including human blood PNP, while the N8-riboside is selective to the E. coli enzyme.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
12
|
Calleri E, Cattaneo G, Rabuffetti M, Serra I, Bavaro T, Massolini G, Speranza G, Ubiali D. Flow-Synthesis of Nucleosides Catalyzed by an Immobilized Purine Nucleoside Phosphorylase fromAeromonas hydrophila: Integrated Systems of Reaction Control and Product Purification. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
An Efficient Chemoenzymatic Process for Preparation of Ribavirin. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1155/2015/734851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ribavirin is an important antiviral drug, which is used for treatment of many diseases. The pilot-scale chemoenzymatic process for synthesis of the active pharmaceutical ingredient Ribavirin was developed with 32% overall yield and more than 99.5% purity. The described method includes the chemical synthesis of 1,2,4-triazole-3-carboxamide, which is a key intermediate and enzyme-catalyzed transglycosylation reaction for preparation of the desired product. 1,2,4-Triazole-3-carboxamide was synthesized from 5-amino-1,2,4-triazole-3-carboxylic acid by classical Chipen-Grinshtein method. Isolated fromE. сoliBL21(DE3)/pERPUPHHO1 strain the purine nucleoside phosphorylase was used as a biocatalytical system. All steps of this process were optimized and scaled.
Collapse
|