1
|
Kantner DS, Megill E, Bostwick A, Yang V, Bekeova C, Van Scoyk A, Seifert EL, Deininger MW, Snyder NW. Comparison of colorimetric, fluorometric, and liquid chromatography-mass spectrometry assays for acetyl-coenzyme A. Anal Biochem 2024; 685:115405. [PMID: 38016493 PMCID: PMC10955768 DOI: 10.1016/j.ab.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Acetyl-Coenzyme A is a central metabolite in catabolic and anabolic pathways as well as the acyl donor for acetylation reactions. Multiple quantitative measurement techniques for acetyl-CoA have been reported, including commercially available kits. Comparisons between techniques for acetyl-CoA measurement have not been reported. This lack of comparability between assays makes context-specific assay selection and interpretation of results reporting changes in acetyl-CoA metabolism difficult. We compared commercially available colorimetric ELISA and fluorometric enzymatic-based kits to liquid chromatography-mass spectrometry-based assays using tandem mass spectrometry (LC-MS/MS) and high-resolution mass spectrometry (LC-HRMS). The colorimetric ELISA kit did not produce interpretable results even with commercially available pure standards. The fluorometric enzymatic kit produced comparable results to the LC-MS-based assays depending on matrix and extraction. LC-MS/MS and LC-HRMS assays produced well-aligned results, especially when incorporating stable isotope-labeled internal standards. In addition, we demonstrated the multiplexing capability of the LC-HRMS assay by measuring a suite of short-chain acyl-CoAs in a variety of acute myeloid leukemia cell lines and patient cells.
Collapse
Affiliation(s)
- Daniel S Kantner
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Philadelphia, PA, 19140, USA
| | - Emily Megill
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Philadelphia, PA, 19140, USA
| | - Anna Bostwick
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Philadelphia, PA, 19140, USA
| | - Vicky Yang
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Philadelphia, PA, 19140, USA
| | - Carmen Bekeova
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | | | - Erin L Seifert
- MitoCare Center, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael W Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nathaniel W Snyder
- Lewis Katz School of Medicine at Temple University, Department of Cardiovascular Sciences, Aging + Cardiovascular Discovery Center, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Cakić N, Kopke B, Rabus R, Wilkes H. Suspect screening and targeted analysis of acyl coenzyme A thioesters in bacterial cultures using a high-resolution tribrid mass spectrometer. Anal Bioanal Chem 2021; 413:3599-3610. [PMID: 33881564 PMCID: PMC8141488 DOI: 10.1007/s00216-021-03318-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022]
Abstract
Analysis of acyl coenzyme A thioesters (acyl-CoAs) is crucial in the investigation of a wide range of biochemical reactions and paves the way to fully understand the concerned metabolic pathways and their superimposed networks. We developed two methods for suspect screening of acyl-CoAs in bacterial cultures using a high-resolution Orbitrap Fusion tribrid mass spectrometer. The methods rely on specific fragmentation patterns of the target compounds, which originate from the coenzyme A moiety. They make use of the formation of the adenosine 3′,5′-diphosphate key fragment (m/z 428.0365) and the neutral loss of the adenosine 3′-phosphate-5′-diphosphate moiety (506.9952) as preselection criteria for the detection of acyl-CoAs. These characteristic ions are generated either by an optimised in-source fragmentation in a full scan Orbitrap measurement or by optimised HCD fragmentation. Additionally, five different filters are included in the design of method. Finally, data-dependent MS/MS experiments on specifically preselected precursor ions are performed. The utility of the methods is demonstrated by analysing cultures of the denitrifying betaproteobacterium “Aromatoleum” sp. strain HxN1 anaerobically grown with hexanoate. We detected 35 acyl-CoAs in total and identified 24 of them by comparison with reference standards, including all 9 acyl-CoA intermediates expected to occur in the degradation pathway of hexanoate. The identification of additional acyl-CoAs provides insight into further metabolic processes occurring in this bacterium. The sensitivity of the method described allows detecting acyl-CoAs present in biological samples in highly variable abundances. Graphical abstract ![]()
Collapse
Affiliation(s)
- Nevenka Cakić
- Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| | - Bernd Kopke
- Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ralf Rabus
- General & Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Heinz Wilkes
- Organic Geochemistry, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
3
|
Li P, Gawaz M, Chatterjee M, Lämmerhofer M. Targeted Profiling of Short-, Medium-, and Long-Chain Fatty Acyl-Coenzyme As in Biological Samples by Phosphate Methylation Coupled to Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2021; 93:4342-4350. [PMID: 33620217 DOI: 10.1021/acs.analchem.1c00664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fatty acyl-coenzyme As (acyl-CoAs) are of central importance in lipid metabolism pathways. Short-chain acyl-CoAs are usually part of metabolomics, and medium- to (very) long-chain acyl-CoAs are focus of lipidomics studies. However, owing to the specific complex and amphiphilic nature contributed by fatty acyl chains and hydrophilic CoA moiety, lipidomic analysis of acyl-CoAs is still challenging, especially in terms of sample preparation and chromatographic coverage. In this work, we propose a derivatization strategy of acyl-CoAs based on phosphate methylation. After derivatization, full coverage (from free CoA to C25:0-CoA) and good peak shape in liquid chromatography were achieved. At the same time, analyte loss due to the high affinity of phosphate groups to glass and metallic surfaces was resolved, which is beneficial for routine analysis in large-scale lipidomics studies. A sample preparation method based on mixed-mode SPE was developed to optimize extraction recoveries and allow optimal integration of the derivatization process in the analytical workflow. LC-MS/MS was performed with targeted data acquisition by SRM transitions, which were constructed based on similar fragmentation rules observed for all methylated acyl-CoAs. To achieve accurate quantification, uniformly 13C-labeled metabolite extract from yeast cells was taken as internal standards. Odd-chain and stable isotope-labeled acyl-CoAs were used as surrogate calibrants in the same matrix. LOQs were between 16.9 nM (short-chain acyl-CoAs) and 4.2 nM (very-long-chain acyl-CoAs). This method was validated in cultured cells and was applied in HeLa cells and human platelets of coronary artery disease patients. It revealed distinct acyl-CoA profiles in HeLa cells and platelets. The results showed that this method can effectively detect acyl-CoAs in biological samples. Considering their central importance in many de novo lipid biosynthesis and remodeling processes, this targeted method offers a valid foundation for future lipidomics analysis of acyl-CoA profiles in biological samples, particularly those concerning metabolic syndrome.
Collapse
Affiliation(s)
- Peng Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Wang HYJ, Hsu FF. Revelation of Acyl Double Bond Positions on Fatty Acyl Coenzyme A Esters by MALDI/TOF Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1047-1057. [PMID: 32167298 DOI: 10.1021/jasms.9b00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fatty acyl coenzyme A esters (FA-CoAs) are important crossroad intermediates in lipid catabolism and anabolism, and the structures are complicated. Several mass spectrometric approaches have been previously described to elucidate their structures. However, a direct mass spectrometric approach toward a complete identification of the molecule, including the location of unsaturated bond(s) in the fatty acid chain has not been reported. In this study, we applied a simple MALDI/TOF mass spectrometric method to a near-complete characterization of long-chain FA-CoAs, including the location(s) of the double bond in the fatty acyl chain, and the common structural features that recognize FA-CoAs. Negative ion mass spectra of saturated, monounsaturated, and polyunsaturated FA-CoAs were acquired with a MALDI/TOF mass spectrometer using 2,5-dihydroxybenzoic acid as the matrix and ionized with a laser fluence two folds of the threshold to induce the in-source fragmentation (ISF) of the analytes. The resulting ISF spectra contained fragment ions arising from specific cleavages of the C-C bond immediate adjacent to the acyl double-bond. This structural feature affords locating the double-bond position(s) of the fatty acyl substituent. Thereby, positional isomer such as 18:3(n - 3) and 18:3(n - 6) FA-CoA can be differentiated without applying tandem mass spectrometry.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine Box 8127, 660 S Euclid Ave., St. Louis, Missouri 63110, United States
| |
Collapse
|
5
|
Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:10576-10585. [PMID: 31064880 DOI: 10.1073/pnas.1904143116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic markers, such as histone acetylation and DNA methylation, determine chromatin organization. In eukaryotic cells, metabolites from organelles or the cytosol affect epigenetic modifications. However, the relationships between metabolites and epigenetic modifications are not well understood in plants. We found that peroxisomal acyl-CoA oxidase 4 (ACX4), an enzyme in the fatty acid β-oxidation pathway, is required for suppressing the silencing of some endogenous loci, as well as Pro35S:NPTII in the ProRD29A:LUC/C24 transgenic line. The acx4 mutation reduces nuclear histone acetylation and increases DNA methylation at the NOS terminator of Pro35S:NPTII and at some endogenous genomic loci, which are also targeted by the demethylation enzyme REPRESSOR OF SILENCING 1 (ROS1). Furthermore, mutations in multifunctional protein 2 (MFP2) and 3-ketoacyl-CoA thiolase-2 (KAT2/PED1/PKT3), two enzymes in the last two steps of the β-oxidation pathway, lead to similar patterns of DNA hypermethylation as in acx4 Thus, metabolites from fatty acid β-oxidation in peroxisomes are closely linked to nuclear epigenetic modifications, which may affect diverse cellular processes in plants.
Collapse
|
6
|
Abrankó L, Williamson G, Gardner S, Kerimi A. Comprehensive quantitative analysis of fatty-acyl-Coenzyme A species in biological samples by ultra-high performance liquid chromatography-tandem mass spectrometry harmonizing hydrophilic interaction and reversed phase chromatography. J Chromatogr A 2017; 1534:111-122. [PMID: 29290399 DOI: 10.1016/j.chroma.2017.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Fatty acyl-Coenzyme A species (acyl-CoAs) are key biomarkers in studies focusing on cellular energy metabolism. Existing analytical approaches are unable to simultaneously detect the full range of short-, medium-, and long-chain acyl-CoAs, while chromatographic limitations encountered in the analysis of limited amounts of biological samples are an often overlooked problem. We report the systematic development of a UHPLC-ESI-MS/MS method which incorporates reversed phase (RP) and hydrophilic interaction liquid chromatography (HILIC) separations in series, in an automated mode. The protocol outlined encompasses quantification of acyl-CoAs of varying hydrophobicity from C2 to C20 with recoveries in the range of 90-111 % and limit of detection (LOD) 1-5 fmol, which is substantially lower than previously published methods. We demonstrate that the poor chromatographic performance and signal losses in MS detection, typically observed for phosphorylated organic molecules, can be avoided by the incorporation of a 0.1% phosphoric acid wash step between injections. The methodological approach presented here permits a highly reliable, sensitive and precise analysis of small amounts of tissues and cell samples as demonstrated in mouse liver, human hepatic (HepG2) and skeletal muscle (LHCNM2) cells. The considerable improvements discussed pave the way for acyl-CoAs to be incorporated in routine targeted lipid biomarker profile studies.
Collapse
Affiliation(s)
- László Abrankó
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Gary Williamson
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Samantha Gardner
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Asimina Kerimi
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Wang S, Wang Z, Zhou L, Shi X, Xu G. Comprehensive Analysis of Short-, Medium-, and Long-Chain Acyl-Coenzyme A by Online Two-Dimensional Liquid Chromatography/Mass Spectrometry. Anal Chem 2017; 89:12902-12908. [PMID: 29098853 DOI: 10.1021/acs.analchem.7b03659] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acyl-coenzyme A (CoA) is a pivotal metabolic intermediate in numerous biological processes. However, comprehensive analysis of acyl-CoAs is still challenging as the properties of acyl-CoAs greatly vary with different carbon chains. Here, we designed a two-dimensional liquid chromatography method coupled with high-resolution mass spectrometry (2D LC/HRMS) to cover all short-, medium-, and long-chain acyl-CoAs within one analytical run. Complex acyl-CoAs were separated into two fractions according to their acyl chains by the first dimensional prefractionation. Then, two fractions containing short-chain acyl-CoAs or medium- and long-chain acyl-CoAs were further separated by the two parallel columns in the second dimension. Nineteen representative standards were chosen to optimize the analytical conditions of the 2D LC/HRMS method. Resolution and sensitivity were demonstrated to be improved greatly, and lowly abundant acyl-CoAs and acyl-CoA isomers could be detected and distinguished. By using the 2D LC/HRMS method, 90 acyl-CoAs (including 21 acyl-dephospho-CoAs) were identified from liver extracts, which indicated that our method was one of the most powerful approaches for obtaining comprehensive profiling of acyl-CoAs so far. The method was further employed in the metabolomics study of malignant glioma cells with an isocitrate dehydrogenase 1 (IDH1) mutation to explore their metabolic differences. A total of 46 acyl-CoAs (including 2 acyl-dephospho-CoAs) were detected, and 12 of them were dysregulated in glioma cells with the IDH1 mutation. These results demonstrated the practicability and the superiority of the established method. Therefore, the 2D LC/HRMS method provides a robust and reproducible approach to the comprehensive analysis of acyl-CoAs in tissues, cells, and other biological samples.
Collapse
Affiliation(s)
- Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
8
|
Schriewer A, Cadenas C, Hayen H. Hydrophilic interaction liquid chromatography tandem mass spectrometry analysis of malonyl-coenzyme A in breast cancer cell cultures applying online solid-phase extraction. J Sep Sci 2017; 40:4303-4310. [PMID: 28877409 DOI: 10.1002/jssc.201700617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022]
Abstract
Cofactors such as coenzyme A and its derivatives acetyl-coenzyme A and malonyl-coenzyme A are involved in many metabolic pathways. Due to trace level concentrations in biological samples and the high reactivity of cofactors, a fast, sensitive, and selective method for quantification is mandatory. In this study, online solid-phase extraction was coupled successfully to hydrophilic interaction liquid chromatography with tandem mass spectrometry for isolation of analytes in complex matrix and quantification by external calibration. Online solid-phase extraction was carried out by application of a weak anion-exchange column, whereas hydrophilic interaction liquid chromatography separation was performed on an amide modified stationary phase. Sample preparation of the extracts before the analysis was reduced to a centrifugation and dilution step. Moreover, the applied online solid-phase extraction significantly reduced matrix effects and increased the signal-to-noise ratio. The limit of detection and the limit of quantification were in the lower nanomolar range. Finally, the applicability of this method was demonstrated on MCF-7 breast cancer cell cultures, a commonly used model system, where acetyl-coenzyme A and malonyl-coenzyme A were determined using standard addition procedure in concentrations of 1.98 μM and 41 nM, respectively.
Collapse
Affiliation(s)
- Alexander Schriewer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors, University of Dortmund, Dortmund, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Morin-Rivron D, Christinat N, Masoodi M. Lipidomics analysis of long-chain fatty acyl-coenzyme As in liver, brain, muscle and adipose tissue by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:344-350. [PMID: 27870154 DOI: 10.1002/rcm.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Long-chain fatty acyl-coenzyme As (FA-CoAs) are important bioactive molecules, playing key roles in biosynthesis of fatty acids, membrane trafficking and signal transduction. Development of sensitive analytical methods for profiling theses lipid species in various tissues is critical to understand their biological activity. A high-pressure liquid chromatography/tandem mass spectrometry method has been developed for the quantitative analysis and screening of long-chain FACoAs in liver, brain, muscle and adipose tissue. METHODS The sample preparation method consists of tissue homogenization, extraction with organic solvent and reconstitution in an ammonium hydroxide buffer. Extracts are separated by liquid chromatography (LC) on a reversed-phase column and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS) in positive mode. An additional neutral loss scan allows for untargeted FA-CoAs screening. RESULTS Extraction was optimized for low sample load (10 mg) of four tissue types (liver, brain, muscle and adipose tissue) with recoveries between 60-140% depending on the analyte and tissue type. Targeted quantification was validated for ten FA-CoAs in the range 0.1-500 ng/mL with accuracies between 85-120%. CONCLUSIONS We have developed and validated a LC/MS/MS method for the quantifications and screening of long-chain FA-CoAs in four different types of mammalian tissue. The extraction method is straightforward and long-chain FA-CoA species can be quantified using only minimum amount of tissue. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Delphine Morin-Rivron
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| | - Nicolas Christinat
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| | - Mojgan Masoodi
- Lipid Biology, Nestlé Institute of Health Sciences, EPFL Innovation Park, Bâtiment H, Lausanne, 1015, Switzerland
| |
Collapse
|