1
|
Sun J, Wang C, Li J, Song D, Guo L. The efficacy of bleomycin sclerotherapy in the treatment of lymphatic malformations: a review and meta-analysis. Braz J Otorhinolaryngol 2023; 89:101285. [PMID: 37423005 PMCID: PMC10344707 DOI: 10.1016/j.bjorl.2023.101285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE At present, bleomycin has been widely used in the treatment of Lymphatic Malformations (LMs). This study aims to perform a meta-analysis to investigate the effectiveness and influencing factors of bleomycin in the treatment of LMs. METHODS We conducted a systematic review and meta-analysis to clarify the relationship between bleomycin and LMs. PubMed, ISI Web of Science and MEDLINE were searched. RESULTS A total of 21 studies (including 428 cases) about bleomycin sclerotherapy for LMs were included in the current meta-analyses. We calculated pooled effective rate and 95% Confidence Interval (95% CI) using random effects model to evaluate the relations between bleomycin and LMs. The results suggested that the effective rate of bleomycin was the combined effective rate was 84.0% (95% CI 0.81‒0.87) and ranged from 39% (95% CI 0.22‒0.56) to 94% (95% CI 0.87-1.02). The heterogeneity among the studies was substantial (I2=61.7%, p= 0.000). In subgroup analyses, it was observed that among retrospective study and prospective study, the estimated effective rate was 80.0% (95% CI 0.76‒0.84) and 91.0% (95% CI 0.85‒0.97), respectively. In terms of the dosage, the combined effective rates of weight-based group and fixed-dose group were 86% (95% CI 0.83‒0.90) and 74.0% (95% CI 0.66‒0.82), respectively. There was no significant publication bias in Egger's test (p=0.059, 95% CI -3.81 to 0.082), but Begg's test did (p=0.023), and the funnel plot is asymmetric. CONCLUSION Our study suggested that bleomycin was safe and effective in the treatment of LMs and was primarily dose dependent.
Collapse
Affiliation(s)
- Jiali Sun
- Children's Hospital Affiliated to Shandong University, Department of Vascular anomalies and Interventional Radiology, Shandong, China
| | - Changfeng Wang
- Children's Hospital Affiliated to Shandong University, Department of Vascular anomalies and Interventional Radiology, Shandong, China
| | - Jing Li
- Children's Hospital Affiliated to Shandong University, Department of Vascular anomalies and Interventional Radiology, Shandong, China
| | - Dan Song
- Children's Hospital Affiliated to Shandong University, Department of Vascular anomalies and Interventional Radiology, Shandong, China; Jinan Children's Hospital, Department of Vascular Anomalies and Interventional Radiology, Jinan, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Shandong, China.
| | - Lei Guo
- Children's Hospital Affiliated to Shandong University, Department of Vascular anomalies and Interventional Radiology, Shandong, China.
| |
Collapse
|
2
|
Lo ATS, Chen JK, Murray V, Todd MH, Hambley TW. Platinum binding preferences dominate the binding of novel polyamide amidine anthraquinone platinum(II) complexes to DNA. Dalton Trans 2021; 50:17945-17952. [PMID: 34842878 DOI: 10.1039/d1dt03539h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexes incorporating a threading anthraquinone intercalator with pyrrole lexitropsin and platinum(II) moieties attached were developed with the goal of generating novel DNA binding modes, including the targeting of AT-rich regions in order to have high cytotoxicities. The binding of the complexes to DNA has been investigated and profiles surprisingly similar to that for cisplatin were observed; the profiles were different to those for a complex lacking the pyrrole lexitropsin component. The lack of selective binding to AT-rich regions suggests the platinum binding was dominating the sequence selectivity, and is consistent with the pyrrole lexitropsin slowing intercalation. The DNA unwinding profiles following platinum binding were evaluated by gel electrophoresis and suggested that intercalation and platinum binding were both occurring.
Collapse
Affiliation(s)
- Anthony T S Lo
- School of Chemistry, The University of Sydney, Camperdown 2006, NSW, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Camperdown 2006, NSW, Australia. .,UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, Camperdown 2006, NSW, Australia.
| |
Collapse
|
3
|
Leung WY, Murray V. The influence of DNA methylation on the sequence specificity of UVB- and UVC-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112225. [PMID: 34090037 DOI: 10.1016/j.jphotobiol.2021.112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Ultraviolet light (UV) is one of the most common DNA damaging agents in the human environment. This paper examined the influence of DNA methylation on the level of UVB- and UVC-induced DNA damage. A purified DNA sequence containing CpG dinucleotides was methylated with a CpG methylase. We employed the linear amplification technique and the end-labelling approach followed by capillary electrophoresis with laser-induced fluorescence to investigate the sequence specificity of UV-induced DNA damage. The linear amplification technique mainly detects cyclobutane pyrimidine dimer (CPD) adducts, while the end-labelling approach mainly detects 6-4 photoproduct (6-4PP) lesions. The levels of CPD and 6-4PP adducts detected in methylated/unmethylated labelled sequences were analysed. The comparison showed that 5-methyl-cytosine significantly reduced the level of both CPD and 6-4PP adducts after UVB (308 nm) and UVC (254 nm) irradiation compared with the non-methylated counterpart.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Hong T, Qiu L, Zhou S, Cai Z, Cui P, Zheng R, Wang J, Tan S, Jiang P. How does DNA 'meet' capillary-based microsystems? Analyst 2021; 146:48-63. [PMID: 33211035 DOI: 10.1039/d0an01336f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA possesses various chemical and physical properties which make it important in biological analysis. The opportunity for DNA to 'meet' capillary-based microsystems is rapidly increasing owing to the expanding development of miniaturization. Novel capillary-based methods can provide favourable platforms for DNA-ligand interaction assay, DNA translocation study, DNA separation, DNA aptamer selection, DNA amplification assay, and DNA digestion. Meanwhile, DNA exhibits great potential in the fabrication of new capillary-based biosensors and enzymatic bioreactors. Moreover, DNA has received significant research interest in improving capillary electrophoresis (CE) performance. We focus on highlighting the advantages of combining DNA and capillary-based microsystems. The general trend presented in this review suggests that the 'meeting' has offered a stepping stone for the application of DNA and capillary-based microsystems in the field of analytical chemistry.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Murray V, Hardie ME, Gautam SD. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel) 2019; 11:genes11010008. [PMID: 31861886 PMCID: PMC7016695 DOI: 10.3390/genes11010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
Ionising radiation (IR) is known to induce a wide variety of lesions in DNA. In this review, we compared three different techniques that examined the DNA sequence preference of IR-induced DNA damage at nucleotide resolution. These three techniques were: the linear amplification/polymerase stop assay, the end-labelling procedure, and Illumina next-generation genome-wide sequencing. The DNA sequence preference of IR-induced DNA damage was compared in purified DNA sequences including human genomic DNA. It was found that the DNA sequence preference of IR-induced DNA damage identified by the end-labelling procedure (that mainly detected single-strand breaks) and Illumina next-generation genome-wide sequencing (that mainly detected double-strand breaks) was at C nucleotides, while the linear amplification/polymerase stop assay (that mainly detected base damage) was at G nucleotides. A consensus sequence at the IR-induced DNA damage was found to be 5′-AGGC*C for the end-labelling technique, 5′-GGC*MH (where * is the cleavage site, M is A or C, H is any nucleotide except G) for the genome-wide technique, and 5′-GG* for the linear amplification/polymerase stop procedure. These three different approaches are important because they provide a deeper insight into the mechanism of action of IR-induced DNA damage.
Collapse
Affiliation(s)
- Vincent Murray
- Correspondence: ; Tel.: +61-2-9385-2028; Fax: +61-2-9385-1483
| | | | | |
Collapse
|
6
|
Hardie ME, Murray V. The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay. Int J Radiat Biol 2019; 95:1613-1626. [PMID: 31498026 DOI: 10.1080/09553002.2019.1665216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The aim of this paper was to investigate the sequence preference of ionizing radiation (IR)-induced DNA damage as assessed by a linear amplification/polymerase stop (LA/PS) assay. The LA/PS assay is able to detect a wide range of IR-induced DNA lesions and this technique was utilized to quantitatively determine the preferential sites of gamma irradiation-induced DNA lesions in three different DNA sequences.Materials and methods: This analysis was performed on an automated DNA sequencer with capillary electrophoresis and laser-induced fluorescence detection.Results: The main outcome of this study was that G nucleotides were preferentially found at IR-induced polymerase stop sites. The individual nucleotides at the IR-induced DNA damage sites were analyzed and a consensus sequence of 5'-GG* (where * indicates the damaged nucleotide) was observed. In a separate method of analysis, the dinucleotides and trinucleotides at the IR-induced DNA damage sites were examined and 5'-GG* and 5'-G*G dinucleotides and 5'-GG*G trinucleotides were found to be the most prevalent. The use of the LA/PS assay permits a large number of IR-induced DNA lesions to be detected in the one procedure including: double- and single-strand breaks, apurinic/apyrimidinic sites and base damage.Conclusions: It was concluded that 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-G) and the degradation products of 8-oxoG were possibly the main lesions detected. To our knowledge, this is the first occasion that the DNA sequence preference of IR-induced DNA damage as detected by a LA/PS assay has been reported.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Mapping chromosomal instability induced by small-molecular therapeutics in a yeast model. Appl Microbiol Biotechnol 2019; 103:4869-4880. [PMID: 31053912 DOI: 10.1007/s00253-019-09845-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
The yeast Saccharomyces cerevisiae has been widely used as a model system for studying the physiological and pharmacological action of small-molecular drugs. Here, a heterozygous diploid S. cerevisiae strain QSS4 was generated to determine whether drugs could induce chromosomal instability by determining the frequency of mitotic recombination. Using the combination of a custom SNP microarray and yeast screening system, the patterns of chromosomal instability induced by drugs were explored at the whole genome level in QSS4. We found that Zeocin (a member of the bleomycin family) treatment increased the rate of genomic alterations, including aneuploidy, loss of heterozygosity (LOH), and chromosomal rearrangement over a hundred-fold. Most recombination events are likely to be initiated by DNA double-stand breaks directly generated by Zeocin. Another remarkable finding is that G4-motifs and low GC regions were significantly underrepresented within the gene conversion tracts of Zeocin-induced LOH events, indicating that certain DNA regions are less preferred Zeocin-binding sites in vivo. This study provides a novel paradigm for evaluating genetic toxicity of small-molecular drugs using yeast models.
Collapse
|
8
|
Hardie ME, Gautam SD, Murray V. The genome-wide sequence preference of ionising radiation-induced cleavage in human DNA. Mol Biol Rep 2019; 46:3731-3745. [PMID: 31037547 DOI: 10.1007/s11033-019-04815-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/11/2019] [Indexed: 12/26/2022]
Abstract
For ionising radiation (IR)-induced cellular toxicity, DNA cleavage is thought to be a crucial step. In this paper, the genome-wide DNA sequence preference of gamma radiation-induced cleavage was investigated in purified human DNA. We utilised Illumina short read technology and over 80 million double-strand breaks (DSBs) were analysed in this study. The frequency of occurrence of individual nucleotides at the 50,000 most frequently cleaved sites was calculated and C nucleotides were found to be most prevalent at the cleavage site, followed by G and T, with A being the least prevalent. 5'-C*C and 5'-CC* dinucleotides (where * is the cleavage site) were found to be the present at the highest frequency at the cleavage site; while it was 5'-CC*C for trinucleotides and 5'-GCC*C and 5'-CC*CC for tetranucleotides. The frequency of occurrence of individual nucleotides at the most frequently cleaved sites was determined and the nucleotides in the sequence 5'-GGC*MH (where M is A or C, H is any nucleotide except G) were found to occur most frequently for DNA that was treated with endonuclease IV (to remove blocking 3'-phosphoglycolate termini); and 5'-GSC*MH (where S is G or C) for non-endonuclease IV-treated DNA. It was concluded that GC-rich sequences were preferentially targeted for cleavage by gamma irradiation. This was the first occasion that an extensive examination of the genome-wide DNA sequence preference of IR-induced DSBs has been performed.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
9
|
Murray V, Chen JK, Chung LH. The Interaction of the Metallo-Glycopeptide Anti-Tumour Drug Bleomycin with DNA. Int J Mol Sci 2018; 19:E1372. [PMID: 29734689 PMCID: PMC5983701 DOI: 10.3390/ijms19051372] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 11/17/2022] Open
Abstract
The cancer chemotherapeutic drug, bleomycin, is clinically used to treat several neoplasms including testicular and ovarian cancers. Bleomycin is a metallo-glycopeptide antibiotic that requires a transition metal ion, usually Fe(II), for activity. In this review, the properties of bleomycin are examined, especially the interaction of bleomycin with DNA. A Fe(II)-bleomycin complex is capable of DNA cleavage and this process is thought to be the major determinant for the cytotoxicity of bleomycin. The DNA sequence specificity of bleomycin cleavage is found to at 5′-GT* and 5′-GC* dinucleotides (where * indicates the cleaved nucleotide). Using next-generation DNA sequencing, over 200 million double-strand breaks were analysed, and an expanded bleomycin sequence specificity was found to be 5′-RTGT*AY (where R is G or A and Y is T or C) in cellular DNA and 5′-TGT*AT in purified DNA. The different environment of cellular DNA compared to purified DNA was proposed to be responsible for the difference. A number of bleomycin analogues have been examined and their interaction with DNA is also discussed. In particular, the production of bleomycin analogues via genetic manipulation of the modular non-ribosomal peptide synthetases and polyketide synthases in the bleomycin gene cluster is reviewed. The prospects for the synthesis of bleomycin analogues with increased effectiveness as cancer chemotherapeutic agents is also explored.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Khoe CV, Chung LH, Murray V. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:88-100. [PMID: 29698913 DOI: 10.1016/j.jphotobiol.2018.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 04/14/2018] [Indexed: 01/17/2023]
Abstract
The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons.
Collapse
Affiliation(s)
- Clairine V Khoe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
11
|
Bolzán AD, Bianchi MS. DNA and chromosome damage induced by bleomycin in mammalian cells: An update. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:51-62. [PMID: 29555029 DOI: 10.1016/j.mrrev.2018.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
Bleomycin (BLM) is an antibiotic isolated from Streptomyces verticillus. It has radiomimetic actions on DNA thus it has been widely used in clinical chemotherapy for the treatment of different types of cancer, including head and neck tumors, lymphomas, squamous-cell carcinomas and germ-cell tumors. Because of this, the study of BLM genotoxicity is of practical interest. This antibiotic is an S-independent clastogen and an agent that generates free radicals and induces single- and double-strand breaks in DNA. In the present review, we will summarize our current knowledge concerning the DNA and chromosome damage induced by BLM in mammalian cells, with emphasis on new developments published since 1991.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, calle 60 y 122, La Plata, Buenos Aires, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), calle 526 y Camino General Belgrano, B1906APO La Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Leung WY, Chung LH, Kava HW, Murray V. RecBCD (Exonuclease V) is inhibited by DNA adducts produced by cisplatin and ultraviolet light. Biochem Biophys Res Commun 2018; 495:666-671. [PMID: 29129691 DOI: 10.1016/j.bbrc.2017.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022]
Abstract
The presence of adducts on the DNA double-helix can have major consequences for the efficient functioning of DNA repair enzymes. E. coli RecBCD (exonuclease V) is involved in recombinational repair of double-strand breaks that are caused by defective DNA replication, DNA damaging agents and other factors. The holoenzyme possesses a bipolar helicase activity which helps unwind DNA from both 3'- and 5'-directions and is coupled with a potent exonuclease activity that is also capable of digesting DNA from both 3'- and 5'-ends. In this study, DNA sequences were damaged with cisplatin or UV followed by RecBCD treatment. DNA damaging agents such as cisplatin and UV induce the formation of intrastrand adducts in the DNA template. It was demonstrated that RecBCD degradation was inhibited by either cisplatin-damaged or UV-damaged DNA sequences. This is the first occasion that RecBCD has been demonstrated to be inhibited by DNA adducts induced by cisplatin or UV. In addition, we quantified the amounts of DNA remaining after RecBCD treatment and observed that the level of inhibition was concentration and dose dependent. A DNA-targeted 9-aminoacridinecarboxamide cisplatin analogue was also found to inhibit RecBCD activity.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hieronimus W Kava
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
13
|
Gautam SD, Hardie ME, Murray V. The Sequence Preference of Gamma-Radiation-Induced Damage in End-Labeled DNA after Heat Treatment. Radiat Res 2017; 189:238-250. [PMID: 29286256 DOI: 10.1667/rr14886.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this work, we examined the DNA sequence preference of gamma-radiation-induced DNA damage in purified DNA sequences after heat treatment. DNA was fluorescently end-labeled and gamma-radiation-induced DNA cleavage was examined using capillary electrophoresis with laser-induced fluorescence detection. Our findings provide evidence that gamma-radiation-induced DNA damage to end-labeled DNA is nonrandom and has a sequence preference. The degree of cleavage was quantified at each nucleotide, and we observed that preferential cleavage occurred at C nucleotides with lesser cleavage at G nucleotides, while being very low at T nucleotides. The differences in percentage cleavage at individual nucleotides ranged up to sixfold. The DNA sequences surrounding the most intense radiation-induced DNA cleavage sites were examined and a consensus sequence 5'-AGGC*C (where C* is the cleavage site) was found. The highest intensity gamma-radiation-induced DNA cleavage sites were found at the dinucleotides, 5'-GG*, 5'-GC*, 5'-C*C and 5'-G*G and at the trinucleotides, 5'-GG*C, 5'-TC*A, 5'-GG*G and 5'-GC*C. These findings have implications for our understanding of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Hardie ME, Murray V. The sequence preference of DNA cleavage by T4 endonuclease VII. Biochimie 2017; 146:1-13. [PMID: 29129742 DOI: 10.1016/j.biochi.2017.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
The enzyme T4 endonuclease VII is a resolvase that acts on branched DNA intermediates during genetic recombination, by cleaving DNA with staggered cuts approximately 3-6 bp apart. In this paper, we investigated the sequence preference of this cleavage reaction utilising two different DNA sequences. For the first time, the DNA sequence preference of T4 endonuclease VII cleavage sites has been examined without the presence of a known DNA substrate to mask any inherent nucleotide preference. The use of the ABI3730 platform enables the cleavage site to be determined at nucleotide resolution. We found that T4 endonuclease VII cleaves DNA with a sequence preference. We calculated the frequency of nucleotides surrounding the cleavage sites and found that following nucleotides had the highest incidence: AWTAN*STC, where N* indicates the cleavage site between positions 0 and 1, N is any base, W is A or T, and S is G or C. An A at position -1 and T at position +2 were the most predominant nucleotides at the cleavage site. Using a Sequence Logo method, the sequence TATTAN*CT was derived at the cleavage site. Note that A and T nucleotides were highly preferred 5' to the cleavage sites in both methods of analysis. It was proposed that the enzyme recognises the narrower minor groove of these consecutive AT base pairs and cleaves DNA 3' to this feature.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Chung LH, Murray V. An extended sequence specificity for UV-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:133-142. [PMID: 29149689 DOI: 10.1016/j.jphotobiol.2017.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 01/26/2023]
Abstract
The sequence specificity of UV-induced DNA damage was determined with a higher precision and accuracy than previously reported. UV light induces two major damage adducts: cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). Employing capillary electrophoresis with laser-induced fluorescence and taking advantages of the distinct properties of the CPDs and 6-4PPs, we studied the sequence specificity of UV-induced DNA damage in a purified DNA sequence using two approaches: end-labelling and a polymerase stop/linear amplification assay. A mitochondrial DNA sequence that contained a random nucleotide composition was employed as the target DNA sequence. With previous methodology, the UV sequence specificity was determined at a dinucleotide or trinucleotide level; however, in this paper, we have extended the UV sequence specificity to a hexanucleotide level. With the end-labelling technique (for 6-4PPs), the consensus sequence was found to be 5'-GCTC*AC (where C* is the breakage site); while with the linear amplification procedure, it was 5'-TCTT*AC. With end-labelling, the dinucleotide frequency of occurrence was highest for 5'-TC*, 5'-TT* and 5'-CC*; whereas it was 5'-TT* for linear amplification. The influence of neighbouring nucleotides on the degree of UV-induced DNA damage was also examined. The core sequences consisted of pyrimidine nucleotides 5'-CTC* and 5'-CTT* while an A at position "1" and C at position "2" enhanced UV-induced DNA damage.
Collapse
Affiliation(s)
- Long H Chung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Gautam SD, Chen JK, Murray V. The DNA sequence specificity of bleomycin cleavage in a systematically altered DNA sequence. J Biol Inorg Chem 2017; 22:881-892. [PMID: 28509989 DOI: 10.1007/s00775-017-1466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022]
Abstract
Bleomycin is an anti-tumour agent that is clinically used to treat several types of cancers. Bleomycin cleaves DNA at specific DNA sequences and recent genome-wide DNA sequencing specificity data indicated that the sequence 5'-RTGT*AY (where T* is the site of bleomycin cleavage, R is G/A and Y is T/C) is preferentially cleaved by bleomycin in human cells. Based on this DNA sequence, we constructed a plasmid clone to explore this bleomycin cleavage preference. By systematic variation of single nucleotides in the 5'-RTGT*AY sequence, we were able to investigate the effect of nucleotide changes on bleomycin cleavage efficiency. We observed that the preferred consensus DNA sequence for bleomycin cleavage in the plasmid clone was 5'-YYGT*AW (where W is A/T). The most highly cleaved sequence was 5'-TCGT*AT and, in fact, the seven most highly cleaved sequences conformed to the consensus sequence 5'-YYGT*AW. A comparison with genome-wide results was also performed and while the core sequence was similar in both environments, the surrounding nucleotides were different.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Murray V, Chen JK, Tanaka MM. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells. Mol Biol Rep 2016; 43:639-51. [PMID: 27188426 DOI: 10.1007/s11033-016-3998-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/04/2016] [Indexed: 12/24/2022]
Abstract
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.
Collapse
Affiliation(s)
- Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Chen JK, Murray V. The determination of the DNA sequence specificity of bleomycin-induced abasic sites. J Biol Inorg Chem 2016; 21:395-406. [PMID: 26940956 DOI: 10.1007/s00775-016-1349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was determined with high precision in purified plasmid DNA using an improved technique. This improved technique involved the labelling of the 5'- and 3'-ends of DNA with different fluorescent tags, followed by simultaneous cleavage by bleomycin and capillary electrophoresis with laser-induced fluorescence. This permitted the determination of bleomycin cleavage specificity with high accuracy since end-label bias was greatly reduced. Bleomycin produces single- and double-strand breaks, abasic sites and other base damage in DNA. This high-precision method was utilised to elucidate, for the first time, the DNA sequence specificity of bleomycin-induced DNA damage at abasic sites. This was accomplished using endonuclease IV that cleaves DNA at abasic sites after bleomycin damage. It was found that bleomycin-induced abasic sites formed at 5'-GC and 5'-GT sites while bleomycin-induced phosphodiester strand breaks formed mainly at 5'-GT dinucleotides. Since bleomycin-induced abasic sites are produced in the absence of molecular oxygen, this difference in DNA sequence specificity could be important in hypoxic tumour cells.
Collapse
Affiliation(s)
- Jon K Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|