1
|
Xiao L, Lu X, Yang H, Lin C, Li L, Ni C, Fang Y, Mo S, Zhan R, Yan P. The Antioxidant and Hypolipidemic Effects of Mesona Chinensis Benth Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113423. [PMID: 35684361 PMCID: PMC9182326 DOI: 10.3390/molecules27113423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
In this study, the antioxidant and hypolipidemic effects of Mesona Chinensis Benth (MCB) extracts were evaluated. Seven fractions (F0, F10, F20, F30, F40, F50 and MTF) were obtained from the MCB ethanol extracts. Compared to the commercial antioxidants (vitamin C), MTF and F30 exhibited higher antioxidant activities in the antiradical activity test and the FRAP assay. The half-inhibition concentration (IC50) for MTF and F30 were 5.323 µg/mL and 5.278 µg/mL, respectively. MTF at 200 µg/mL significantly decreased the accumulation of TG in oleic acid (OA)-induced HepG2 cells and reversed the inhibitory effect of Compound C on AMPK (MTF and F30 significantly increased the glucose utilization of insulin-induced HepG2 cells). In addition, the components of MTF were identified by HPLC-MS, which were caffeic acid, quercetin 3-O-galactoside, isoquercetin, astragalin, rosmarinic acid, aromadendrin-3-O-rutinoside, rosmarinic acid-3-O-glucoside and kaempferol-7-O-glucoside. Through statistical correlations by Simca P software, it was found that the main antioxidant and hypolipidemic components of MCB might be caffeic acid, kaempferol-7-O-glucoside, rosmarinic acid-3-O-glucoside and aromadendrin-3-O-rutinoside, which may play important roles in the AMPK pathway. MTF and F30 in MCB could be potential health products for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Luhua Xiao
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Xiaoying Lu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Huilin Yang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Cuiqing Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Le Li
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Chen Ni
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Yuan Fang
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Suifen Mo
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
| | - Ruoting Zhan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
- Correspondence: (R.Z.); (P.Y.); Tel.:+86-020-3935-8045 (R.Z.); +86-020-3935-8331 (P.Y.)
| | - Ping Yan
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (L.X.); (X.L.); (H.Y.); (C.L.); (L.L.); (C.N.); (Y.F.); (S.M.)
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou 510006, China
- Joint Laboratory of Nation Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou 510006, China
- Correspondence: (R.Z.); (P.Y.); Tel.:+86-020-3935-8045 (R.Z.); +86-020-3935-8331 (P.Y.)
| |
Collapse
|
2
|
Sai C, Wang J, Li B, Ding L, Wang H, Wang Q, Hua H, Zhang F, Ren Q. Isolation and identification of alkaloids from Macleaya microcarpa by UHPLC-Q-TOF-MS and their cytotoxic activity in vitro, antiangiogenic activity in vivo. BMC Chem 2020; 14:5. [PMID: 31993585 PMCID: PMC6977315 DOI: 10.1186/s13065-020-0660-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background Extensive bioactivities of alkaloids from the genus Macleaya (Macleaya cordata (Willd.) R. Br. and Macleaya microcarpa (Maxim.) Fedde) have been widely reported, as well as more and more concerned from the scientific communities. However, systematic research on the phytochemical information of M. microcarpa is incomplete. The aim of this study was to rapidly and conveniently qualitative analyze alkaloids from M. microcarpa by ultra-performance liquid chromatography/quadrupole-time-of-fight mass spectrometry (UHPLC–Q-TOF-MS) using accurate mass weight and characteristic fragment ions, furthermore separate and identify the main alkaloids, test antitumor activity in vitro and antiangiogenic activity in vivo. Results A total of 14 alkaloids from fruits of M. microcarpa were identified by UHPLC–Q-TOF-MS, including 5 protopines, 2 benzophenanthridines, 1 dimer, 1 dihydrobenzophenanthridines and 5 unknown structure compounds. Two major alkaloids were isolated by various column chromatographic methods. Their structures were determined by NMR data and related literatures. The two major alkaloids were evaluated for intro cytotoxic activities against HL-60, MCF-7, A-549, and in vivo antiangiogenic activity using transgenic zebrafish. Conclusions Current qualitative method based on UHPLC–Q-TOF-MS technique provided a scientific basis for isolation, structural identification, and in vitro or in vivo pharmacological further study of alkaloids from M. microcarpa in the future.
Collapse
Affiliation(s)
- Chunmei Sai
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China.,Shandong Guangyu Tang Guo Yao Co., Ltd., Jining, 272071 Shandong China
| | - Jian'an Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Binjie Li
- 3Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Lin Ding
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Huiyun Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Qibao Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| | - Huiming Hua
- 3Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016 Liaoning China
| | - Fangpeng Zhang
- Shandong Guangyu Tang Guo Yao Co., Ltd., Jining, 272071 Shandong China
| | - Qiang Ren
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 Shandong China
| |
Collapse
|
3
|
Sun Z, Chang HM, Wang A, Song J, Zhang X, Guo J, Leung PCK, Lian F. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry. Reprod Biol Endocrinol 2019; 17:45. [PMID: 31186025 PMCID: PMC6560878 DOI: 10.1186/s12958-019-0490-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex disorder associated with multiple metabolic disturbance, including defective glucose metabolism and insulin resistance. The altered metabolites caused by the related metabolic disturbance may affect ovarian follicles, which can be reflected in follicular fluid composition. The aim of this study is to investigate follicular fluid metabolic profiles in women with PCOS using an advanced sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry. MATERIALS AND METHODS Nineteen women with PCOS and twenty-one healthy controls undergoing IVF/ET were recruited, and their follicular fluid samples were collected for metabolomic study. Follicular fluid metabolic profiles, including steroid hormones, free fatty acids, bioactive lipids, and amino acids were analyzed using the principal component analysis (PCA) and partial least squares to latent structure-discriminant analysis (PLS-DA) model. RESULTS Levels of free fatty acids, 3-hydroxynonanoyl carnitine and eicosapentaenoic acid were significantly increased (P < 0.05), whereas those of bioactive lipids, lysophosphatidylcholines (LysoPC) (16:0), phytosphingosine, LysoPC (14:0) and LysoPC (18:0) were significantly decreased in women with PCOS (P < 0.05). Additionally, levels of steroid hormone deoxycorticosterone and two amino acids, phenylalanine and leucine were higher in the PCOS patients (P < 0.05). CONCLUSION Women with PCOS display unique metabolic profiles in their follicular fluid, and this data may provide us with important biochemical information and metabolic signatures that enable a better understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhengao Sun
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Hsun-Ming Chang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Aijuan Wang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jingyan Song
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Xingxing Zhang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jiayin Guo
- 0000 0000 8877 7471grid.284723.8Guandong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Peter C. K. Leung
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4 Canada
| | - Fang Lian
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| |
Collapse
|
4
|
Li Z, Guo X, Cao Z, Liu X, Liao X, Huang C, Xu W, Liu L, Yang P. New MS network analysis pattern for the rapid identification of constituents from traditional Chinese medicine prescription Lishukang capsules in vitro and in vivo based on UHPLC/Q-TOF-MS. Talanta 2018; 189:606-621. [DOI: 10.1016/j.talanta.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/26/2018] [Accepted: 07/10/2018] [Indexed: 01/07/2023]
|
5
|
Liu S, Dai G, Sun L, Sun B, Chen D, Zhu L, Wang Y, Zhang L, Chen P, Zhou D, Ju W. Biotransformation and Metabolic Profile of Limonin in Rat Liver Microsomes, Bile, and Urine by High-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10388-10393. [PMID: 30260225 DOI: 10.1021/acs.jafc.8b02057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Limonin is a triterpenoid in citrus seeds, which has significant biological activities. However, the metabolic profile of limonin has not been fully understood. To expound its metabolism in vivo and in vitro, the metabolites of limonin was studied by rat liver microsomes, urine, and bile. High-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for identification. Among the metabolites, the structures of M1 and M3 were confirmed by chemical synthesis and nuclear magnetic resonance spectra analysis. Our results indicated that reduction and hydrolysis were the two major pathways during limonin metabolism in vivo and in vitro. The results from this work are valuable and important for understanding the metabolic process of limonin.
Collapse
Affiliation(s)
- Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Guoliang Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Luning Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Bingting Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Du Chen
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , 24 Tongjiaxiang Road , Nanjing , Jiangsu 210009 , People's Republic of China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Yao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| | - Li Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210016 , People's Republic of China
| | - Dong Zhou
- Department of Pathology , University of Pittsburgh School of Medicine , Pittsburgh , Pennsylvania 15213 , United States
| | - Wenzheng Ju
- Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , People's Republic of China
| |
Collapse
|
6
|
Liao M, Cheng X, Zhang X, Diao X, Liang C, Zhang L. Qualitative and Quantitative Analyses of Active Constituents in Trollius ledebourii. J Chromatogr Sci 2018; 56:619-635. [PMID: 29668849 DOI: 10.1093/chromsci/bmy035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 02/03/2023]
Abstract
Trollius ledebourii has been more involved in Mongolian medicine and is often used as a type of tea for heat-clearing and detoxifying in the populus. In this study, a rapid and sensitive method was established for the qualitative and quantitative analyses of the major constituents in T. ledebourii. Ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry was developed for the identification of the multi-constituents in T. ledebourii. A total of 37 chemical constituents in T. ledebourii extract were unambiguously or tentatively identified, including 17 flavonoid glycosides, 6 flavones, 3 flavonols, 1 dihydroflavone, 8 phenolic acids, 1 amide and 1 triterpene. Pectolinarin, naringenin, isorhamnetin, diosmetin, protocatechuic acid, paeonol, caffeic acid and ferulic acid were first detected in T. ledebourii and the buttercup family. High-performance liquid chromatography-quadrupole ion trap tandem mass spectrometry was applied for the simultaneous determination of 11 compounds, which were either with high contents or strong bioactivities. Satisfactory linearity was achieved with a wide linear range and fine determination coefficient (r > 0.9987). The overall recoveries ranged from 98.07 to 101.2%, and the precision in terms of RSD was <0.74%. The results might provide the basis for quality control analysis of T. ledebourii.
Collapse
Affiliation(s)
- Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Xiaoye Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Xia Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Caijuan Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, PR China
| |
Collapse
|
7
|
SWATH HM-Based Metabolomics of Follicular Fluid in Patients Shows That Progesterone Adversely Affects Oocyte Quality. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1780391. [PMID: 29951527 PMCID: PMC5987297 DOI: 10.1155/2018/1780391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/29/2018] [Indexed: 01/09/2023]
Abstract
Objective We reveal the relationship between progesterone level in follicular fluid and oocyte quality based on sequential window acquisition of all theoretical fragment-ion spectra (SWATH™), a powerful high-resolution mass spectrometric data independent acquisition technique. Method Follicular fluid samples were collected from 22 subjects (the level of progesterone > 1.5 ng/mL) of progesterone group, as well as from 22 subjects (the level of progesterone < 1.5 ng/mL) of control group, and analyzed using UPLC-Q-TOF. All methods were performed in accordance with ISO 9001:2008. Novel SWATH acquisition mode on an ultra-high performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (with resolving power 20,000–40,000) was investigated for the analysis of human follicular fluid. The principal component variable grouping detects intersample variable correlation and groups variables with similar profiles which simplifies interpretation and highlights related ions and fragments. It can also extract product ion spectra from the data collected by fragmenting a wide precursor ion window. Results Follicular fluid from the two groups differed with respect to five metabolites. Follicular fluid from the progesterone group contained elevated levels of 8-hydroxyguanosine and 4-hydroxynonenal and reduced levels of ATP, estradiol, and L-carnitine. The increased progesterone level on the day of HCG injection could negatively impact oocyte quality, thus reducing the pregnancy rate of IVF patients.
Collapse
|
8
|
Hu X, Shen Y, Yang S, Lei W, Luo C, Hou Y, Bai G. Metabolite identification of ursolic acid in mouse plasma and urine after oral administration by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RSC Adv 2018; 8:6532-6539. [PMID: 35540410 PMCID: PMC9078307 DOI: 10.1039/c7ra11856b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid widely existing in various medicinal plants, has been reported to have multifarious biological activities such as anti-inflammatory, anticancer and antioxidant activities. In this paper, we analyzed the metabolic profile of UA in mice (including plasma and urine) by using ultra-high performance liquid chromatography (UPLC) coupled with a quadrupole time-of-flight (Q/TOF) method. Principal component analysis (PCA) was applied to differentiate the control and experimental groups. Potential biomarkers were filtered by using loading plots followed by further analysis with UPLC-Q/TOF-MS data. The results showed that 3 metabolites in plasma were identified as markers, one of which was UA and the others were UA epoxides, which belonged to phase I metabolites. Additionally, 5 phase II metabolites were tentatively identified in urine through an accurate mass and characteristic fragment ions. These data suggested that the biotransformation of UA undergoes the major metabolic reactions of the phase I metabolic route of olefin oxidation and phase II metabolic routes of glycine conjugation, glutathione conjugation and glucuronidation. This is the first report of analysis and characterization of the metabolites after the oral administration of UA in mice. The proposed metabolic pathways of UA in mice is also raised for the first time. It might provide further understanding of the potential biological mechanism of UA. First report on metabolism study of ursolic acid (UA) in vivo of mice.![]()
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Yunbing Shen
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Shengnan Yang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Wei Lei
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Cheng Luo
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| |
Collapse
|
9
|
Cheng X, Liao M, Diao X, Sun Y, Zhang L. Screening and identification of metabolites of two kinds of main active ingredients and hepatotoxic pyrrolizidine alkaloids in rat after lavage Farfarae Flos extract by UHPLC-Q-TOF-MS mass spectrometry. Biomed Chromatogr 2017; 32. [PMID: 28702943 DOI: 10.1002/bmc.4047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 01/31/2023]
Abstract
Farfarae Flos, the dried flower buds of Tussilago farfara L., is usually used to treat coughs, bronchitic and asthmatic conditions as an important traditional Chinese medicine. Tussilagone and methl butyric acid tussilagin ester are seen as representatives of two kinds of active substances. In addition, the pyrrolizidine alkaloids, mainly senkirkine and senecionine, present in the herb can be hepatoxic. In this study, a rapid and sensitive ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry method was successfully applied to identify the metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine. A total of 35, 37, 18 and nine metabolites of tussilagone, methl butyric acid tussilagin ester, senkirkine and senecionine in rats were tentatively identified. Hydrolysis, oxidation, reduction and demethylation were the major metabolic reactions for tussilagone and methl butyric acid tussilagin ester. The main biotransformation routes of senkirkine and senecionine were identified as demethylation, N-methylation, oxidation and reduction. This study is the first reported analysis and characterization of the metabolites and the proposed metabolic pathways might provide further understanding of the metabolic fate of the chemical constituents after oral administration of Farfarae Flos extract in vivo.
Collapse
Affiliation(s)
- Xiaoye Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Xie W, Jin Y, Hou L, Ma Y, Xu H, Zhang K, Zhang L, Du Y. A practical strategy for the characterization of ponicidin metabolites in vivo and in vitro by UHPLC-Q-TOF-MS based on nontargeted SWATH data acquisition. J Pharm Biomed Anal 2017; 145:865-878. [PMID: 28830062 DOI: 10.1016/j.jpba.2017.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
Ponicidin is an active natural ent-kaurane diterpenoid ingredient originating from many Isondon herbs and is expected to become a new anticancer agent. In this study, a practical strategy was developed for the identification of ponicidin metabolites in vivo and in vitro utilizing ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). The analytical strategy was as follows: potential ponicidin metabolites were detected by a novel on-line data acquisition approach, i.e., sequential window acquisition of all theoretical fragment-ion spectra (SWATH™). Compared to the traditional information-dependent acquisition (IDA) method, SWATH™ significantly improved the hit rate of low-level or trace metabolites because it could obtain all MS/MS spectra. Moreover, many data post-processing methods were used to deduce the metabolites structures. As a result, a total of 20 metabolites were characterized in vivo and in vitro. The results showed that ponicidin could undergo general metabolic reactions, such as oxidation, reduction, hydrolysis, methylation and glucuronidation. Furthermore, there was an obvious difference in the ponicidin metabolites among four species in vitro. This is the first time that the SWATH™ data acquisition mode has been used to characterize ponicidin metabolites in trace amounts or in a biological matrix. These results not only provided a better understanding of the safety and efficacy of ponicidin but also showed a valuable methodology for the identification of other ent-kaurane diterpenoid metabolites.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yiran Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China; The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China
| | - Ludan Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yinghua Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Kerong Zhang
- Applied Biosystems Trading Co., Ltd., Beijing Branch Office, Beijing 100027, PR China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China.
| |
Collapse
|
11
|
Hu K, Zhao G, Fu Y, Wang S, Yuan H, Xie F, Zhang S, Liu H, Liu M. Screening and identification of the main metabolites of 2-amino-9H-pyrido[2,3-b]indole (AαC) in liver microsomes and rat urine by using UPLC-Q-TOF-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:110-121. [PMID: 28157663 DOI: 10.1016/j.jchromb.2017.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/17/2022]
Abstract
2-Amino-9H-pyrido[2,3-b]indole (AαC), which has been reported to be 40-258ng per cigarette, was regarded as a probable human carcinogen (Group 2B) and harmful composition in Hoffman list. Thus, it is of great significance to develop an effective method for the accurate identification of AαC and its metabolites. In the present study, we have investigated for the first time the in vivo and in vitro metabolites of AαC using ultra performance liquid chromatography combined with diode array detector and time-of-flight mass spectrometry (UPLC-DAD and UPLC-Q-TOF-MS/MS). A comparative study showed that the metabolic patterns of AαC in beagle, mouse, rat and human liver microsomes were of significant difference with these in rat urine. For the metabolism of AαC in liver microsomes, nine metabolites of AαC, including five hydroxy metabolites, two quinone metabolites and two N-dimer metabolites, have been found. However, metabolism of AαC in rats is a phase II process with complex enzyme catalysis, 23 metabolites including C- and N-oxidation, O- and N-glycosylation, O- and N-sulfonation, and N-acetylation were identified in rat urine. In addition, five new N-acetyl-AαC-OH metabolites were identified for the first time, indicating a possible new pathway for the metabolism. This study significantly enriched our knowledge about the metabolism of AαC, and will be useful for a better understanding of its harmfulness and toxicity.
Collapse
Affiliation(s)
- Kai Hu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yufeng Fu
- Technology Center of Henan Tobacco Industrial Co., Ltd., Zhengzhou, China
| | - Sheng Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Hang Yuan
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Liu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Minying Liu
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Liu G, Zhuang L, Song D, Lu C, Xu X. Isolation, purification, and identification of the main phenolic compounds from leaves of celery (Apium graveolensL.var. dulceMill./Pers.). J Sep Sci 2016; 40:472-479. [DOI: 10.1002/jssc.201600995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering; Yangzhou University; Yangzhou P. R. China
| | - Linwu Zhuang
- College of Food Science and Engineering; Yangzhou University; Yangzhou P. R. China
| | - Dandan Song
- College of Food Science and Engineering; Yangzhou University; Yangzhou P. R. China
| | - Chunliang Lu
- Testing Center; Yangzhou University; Yangzhou P. R. China
| | - Xin Xu
- College of Food Science and Engineering; Yangzhou University; Yangzhou P. R. China
| |
Collapse
|