1
|
Ren J, Ren X, Ma L, Liu J, Yuan S, Wang G. Pharmacokinetics and antioxidant activity of dihydrocaffeic acid grafted chitosan nanomicelles loaded with chicoric acid in broilers. Poult Sci 2024; 103:103776. [PMID: 38688136 PMCID: PMC11077034 DOI: 10.1016/j.psj.2024.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
Chicoric acid (CA) is a natural nutrient found in plants, showcasing diverse biological activities, including anti-inflammatory and antioxidant properties. Despite its valuable properties, CA faces limitations in bioavailability and susceptibility to oxidative breakdown during utilization. Previous research introduced synthesized dihydrocaffeic acid grafted chitosan self-assembled nanomicelles (DA-g-CS), demonstrating its potential to enhance CA absorption. This study aims to investigate the pharmacokinetics, tissue distribution, and antioxidant activity of both CA and DA-g-CS loaded CA (DA-g-CS/CA) in broilers. An IPEC-J2 cell model was established and evaluated to delve deeper into the transport mechanism and antioxidant potential. The in vivo pharmacokinetic analysis in broilers highlighted a substantial difference: the maximum plasma concentration (Cmax) of DA-g-CS/CA exceeded CA by 2.6-fold, yielding a notable increased relative bioavailability to 214%. This evidence underscores the significant enhancement in CA's oral absorption, facilitated by DA-g-CS. The collective evaluation outcomes affirm the successful development of the cell model, indicating its suitability for drug transporter experiments. The findings from the intestinal transit analysis revealed that both CA and DA-g-CS/CA underwent passive entry into IPEC-J2 cells. Notably, the cellular uptake rate of DA-g-CS loaded with CA was significantly amplified, reaching 2.1 times higher than that of CA alone. Intracellular transport mechanisms involved microtubules, lysosomes, and the endoplasmic reticulum, with an additional pathway involving the endoplasmic reticulum observed specifically for DA-g-CS/CA, distinguishing it from CA. Moreover, the results from both in vivo and in vitro antioxidant assessments highlight the potent antioxidant activity of DA-g-CS/CA, showcasing its efficacy in preventing and treating cellular damage induced by oxidative stress. In summary, these findings underscore the significant enhancement of CA's efficacy facilitated by DA-g-CS, establishing a robust theoretical foundation for the prospective application of CA within livestock and poultry farming.
Collapse
Affiliation(s)
- Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Leying Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China
| | - Sikun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei 071000, People's Republic of China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, People's Republic of China.
| |
Collapse
|
2
|
Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol 2024; 15:1380848. [PMID: 38966394 PMCID: PMC11222340 DOI: 10.3389/fmicb.2024.1380848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Tuberculosis (TB) is a chronic bacterial disease, as well as a complex immune disease. The occurrence, development, and prognosis of TB are not only related to the pathogenicity of Mycobacterium tuberculosis (Mtb), but also related to the patient's own immune state. The research and development of immunotherapy drugs can effectively regulate the body's anti-TB immune responses, inhibit or eliminate Mtb, alleviate pathological damage, and facilitate rehabilitation. This paper reviews the research progress of immunotherapeutic compounds for TB, including immunoregulatory compounds and repurposing drugs, and points out the existing problems and future research directions, which lays the foundation for studying new agents for host-directed therapies of TB.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
A Bio-Guided Screening for Antioxidant, Anti-Inflammatory and Hypolipidemic Potential Supported by Non-Targeted Metabolomic Analysis of Crepis spp. Molecules 2022; 27:molecules27196173. [PMID: 36234710 PMCID: PMC9571268 DOI: 10.3390/molecules27196173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
This study was designed to evaluate the chemical fingerprints and the antioxidant, anti-inflammatory and hypolipidemic activity of selected Crepis species collected in Greece, namely, C. commutata, C. dioscoridis, C. foetida, C. heldreichiana, C. incana, C. rubra, and Phitosia crocifolia (formerly known as Crepis crocifolia). For the phytochemical analyses, sample measurements were carried out by using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled with mass spectrometry (LC-MS). Τhe extracts were evaluated both in vitro (radical scavenging activity: DPPH assay and total phenolic content: Folin–Ciocalteu) and in vivo (paw edema reduction and hypolipidemic activity: experimental mouse protocols). Among the tested extracts, C. incana presented the highest gallic acid equivalents (GAE) (0.0834 mg/mL) and the highest antioxidant activity (IC50 = 0.07 mg/mL) in vitro, as well as the highest anti-inflammatory activity with 32% edema reduction in vivo. Moreover, in the hypolipidemic protocol, the same extract increased plasma total antioxidant capacity (TAC) by 48.7%, and decreased cholesterol (41.3%) as well as triglycerides (37.2%). According to fractionation of the extract and the phytochemical results, this biological effect may be associated with the rich phenolic composition; caffeoyl tartaric acid derivatives (cichoric and caftaric acid) are regarded as the most prominent bioactive specialized metabolites. The present study contributes to the knowledge regarding the phytochemical and pharmacological profile of Crepis spp.
Collapse
|
4
|
Cichoric Acid May Play a Role in Protecting Hair Cells from Ototoxic Drugs. Int J Mol Sci 2022; 23:ijms23126701. [PMID: 35743144 PMCID: PMC9224198 DOI: 10.3390/ijms23126701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 μM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 μM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 μM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 μM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.
Collapse
|
5
|
The Neonicotinoid Thiacloprid Interferes with the Development, Brain Antioxidants, and Neurochemistry of Chicken Embryos and Alters the Hatchling Behavior: Modulatory Potential of Phytochemicals. BIOLOGY 2022; 11:biology11010073. [PMID: 35053072 PMCID: PMC8773094 DOI: 10.3390/biology11010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. TH resulted neurotoxic to chicken embryos and possibly neurotoxic to embryos of other vertebrates. Moreover, CA and RA exerted both an antioxidant and a neuroprotective effect on embryos. Abstract The present experiment was performed to investigate the toxic impact of thiacloprid (TH) on the brain of developing chicken embryos and also to measure its influence on the behavioral responses of hatchlings. The role of chicoric acid (CA) and rosmarinic acid (RA) in modulating the resulted effects was also investigated. The chicken eggs were in ovo inoculated with TH at different doses (0.1, 1, 10, and 100 ug/egg). TH increased the mortality and abnormality rates and altered the neurochemical parameters of exposed embryos dose-dependently. TH also decreased the brain level of monoamines and amino acid neurotransmitters and decreased the activities of acetylcholine esterase (AchE) and Na+/K+-ATPase. The brain activity of catalase (CAT) and superoxide dismutase (SOD) was diminished with downregulation of their mRNA expressions in the brain tissue. When TH was co-administered with CA and RA, the toxic impacts of the insecticide were markedly attenuated, and they showed a complementary effect when used in combination. Taken together, these findings suggested that TH is neurotoxic to chicken embryos and is possibly neurotoxic to embryos of other vertebrates. The findings also demonstrated the antioxidant and neuroprotective effects of CA and RA. Based on the present findings, the CA and RA can be used as invaluable ameliorative of TH-induced toxicity.
Collapse
|
6
|
Lv C, Huang S, Wang Y, Hu Z, Zhao G, Ma C, Cao X. Chicoric acid encapsulated within ferritin inhibits tau phosphorylation by regulating AMPK and GluT1 signaling cascade. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
7
|
Pu Y, Cai Y, Zhang Q, Hou T, Zhang T, Zhang T, Wang B. Comparison of Pinoresinol and its Diglucoside on their ADME Properties and Vasorelaxant Effects on Phenylephrine-Induced Model. Front Pharmacol 2021; 12:695530. [PMID: 34434107 PMCID: PMC8381248 DOI: 10.3389/fphar.2021.695530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
Pinoresinol (PINL) and pinoresinol diglucoside (PDG), two natural lignans found in Eucommia ulmoides Oliv. (Duzhong), have several pharmacological activities. However, there is no report available on their absorption, distribution, metabolism, and elimination (ADME) properties. Given the possible wide spectrum of their application in therapeutic areas, this area should be investigated. This work studied the in vitro ADME properties of PDG and PINL, including their kinetic solubility, permeability across monolayer cells (PAMPA), protein binding, and metabolic stabilities in liver microsomes. The in vivo pharmacokinetic study and in vitro vasorelaxant effects on isolated phenylephrine-induced aortic rings of PINL and PDG were also investigated. It was found that both of their kinetic solubility in PBS (pH 7.4) was greater than 100 μM, indicating that they are both soluble compounds. The permeability investigations (Peff) by PAMPA indicated that PINL had higher permeability than PDG (p < 0.05). Both components represented moderate plasma protein binding activities (average binding rate in human plasma: PINL 89.03%, PDG 45.21%) and low metabolic rate (t1/2 in human liver microsome: PINL 1509.5 min, PDG 1004.8 min). Furthermore, the results of pharmacokinetic studies indicated that PINL might be eliminated less quickly than PDG from the rat plasma, and its cumulative urinary excretion was much lower than that of PDG. The phenylephrine-induced aortic rings demonstrated concentration-dependent vasorelaxation in PDG, PINL, or their combination group. The vasorelaxant effects of PINL were more obvious than those of PDG, whereas the vasorelaxant effect of the combinations was significantly better than that of the single component (p < 0.05). The similarity or difference between PINL and its diglucoside in these pharmaceutical aspects may offer valuable insights into the further exploration of lignans and might contribute to relevant studies involving natural products with similar molecular structure and their glucosides.
Collapse
Affiliation(s)
- Yiqiong Pu
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqing Cai
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianling Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Clinical Research Institute of Integrated Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Unravelling the Phytochemical Composition and the Pharmacological Properties of an Optimized Extract from the Fruit from Prunus mahaleb L.: From Traditional Liqueur Market to the Pharmacy Shelf. Molecules 2021; 26:molecules26154422. [PMID: 34361576 PMCID: PMC8347645 DOI: 10.3390/molecules26154422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.
Collapse
|
9
|
Chen L, Li S, Liu J, Gan X, Jiang Z, Xu J, Cai S. Evaluating Pharmacokinetic and Distribution Characteristics for A New Antitumor Activity Ortho-aryl Chalcone Compound of OC26 in Rats by LC-MS/MS Method. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
OC26, an ortho-aryl chalcone compound, shows excellent antitumor activity
in vitro and vivo. However, the pharmacokinetic characteristics of OC26 have not been comprehensively
reported. It is essential to investigate the correlation of pharmacological response.
Objective:
To further explore OC26, this study aims to develop an ultra-performance liquid chromatography-
tandem mass spectrometric (UPLC-MS/MS) method to reveal the pharmacokinetics and distribution
characteristics in rats of OC26.
Methods:
An UPLC-MS/MS method was developed to detect OC26 in plasma and various tissues. The
protein precipitation method was applied to process the biological samples. After intravenous injection
12.5mg/kg of OC26 in rats, plasma and tissue samples were collected from rats and the method was
applied to investigate pharmacokinetic and distribution characteristics of OC26.
Results:
Calibration curve samples of OC26 concentration range from 20 to 2000 ng/mL with the
goodness of fit (r2> 0.99). The precisions for the method were within 12.3%, while the accuracies for
the method were within ±11% (bias). The matrix effect had no influence on the accuracy and precision
of the method. After intravenous injection 12.5mg/kg of OC26 in rats, OC26 was rapidly eliminated
(t1/2=31.39±7.87min, MRT0→∞=15.03±2.55min) from rat plasma and widely distributed
(Vd=4.83±0.96L/kg) in tissues. The highest concentration of OC26 was detected in the brain in which
peak content (~8962.78ng/g at 15min) was over 5-fold higher than that of in other tissues, which
prompted new potential targets in the brain. Besides, lung and heart also detected quite a high level of
OC26. Benefited from quick elimination in the collected tissues and plasma, long-term accumulation
was not observed as chronic toxicity might be less.
Conclusions:
This UPLC-MS/MS method was successfully applied to detect OC26 and provide a theoretical
basis for the further study of OC26.
Collapse
Affiliation(s)
- Lexing Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiying Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiang Liu
- Sichuan Greentech Biotechnology Co., Ltd, Meishan 620042, China
| | - Xia Gan
- Sichuan Greentech Biotechnology Co., Ltd, Meishan 620042, China
| | - Zhounan Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shaohui Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhang Y, Lv C, Zhao G. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yuan Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
- School of Public Health, Capital Medical University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Chang X, Dong S, Bai W, Di Y, Gu R, Liu F, Zhao B, Wang Y, Liu X. Methylated Metabolites of Chicoric Acid Ameliorate Hydrogen Peroxide (H 2O 2)-Induced Oxidative Stress in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2179-2189. [PMID: 33577312 DOI: 10.1021/acs.jafc.0c07521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chicoric acid (CA) can display health benefits as a dietary polyphenol. However, as CA is widely metabolized in vivo, the actual compounds responsible for its bioactivities are not entirely known. Herein, the major methylated metabolites of CA were isolated from an in vitro co-incubation system, and their structures were elucidated. The antioxidant activities of the monomethylated metabolites (M1) and dimethylated metabolites (M2) of CA were evaluated against H2O2-induced oxidative stress damage in HepG2 cells and compared to CA. The results indicated that both M1 and M2 had better antioxidant capacities than CA by increasing cell viability, improving mitochondrial function, and balancing cellular redox status. These compounds also prevented oxidative stress by mediating the Keap1/Nrf2 transcriptional pathway and downregulating enzyme activity. The current research indicates that the methylated metabolites of CA could potentially be the candidates that are responsible for the biological efficacies attributed to CA.
Collapse
Affiliation(s)
- Xiaowen Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shan Dong
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center (Guangdong), Shenzhen 518000, China
| | - Wenliang Bai
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center (Guangdong), Shenzhen 518000, China
| | - Yan Di
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ruijuan Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Zhang SM, Zhang XX, Chen X, Hu S, Bai XH. Deep eutectic solvent-based hollow fiber liquid-phase microextraction for quantification of Q-markers of cinnamic acid derivatives in traditional Chinese medicines and research of their plasma protein binding rates. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Yu L, Chen X, Zhang WS, Zheng L, Xu WW, Xu MY, Jiang XH, Wang L. Metabolite identification, tissue distribution, excretion and preclinical pharmacokinetic studies of ET-26-HCl, a new analogue of etomidate. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191666. [PMID: 32257329 PMCID: PMC7062083 DOI: 10.1098/rsos.191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023]
Abstract
ET-26-HCl, a novel anaesthetic agent with promising pharmacological properties, lacks extensive studies on pharmacokinetics and disposition in vitro and in vivo. In this study, we investigated the metabolic stability, metabolite production and plasma protein binding (PPB) of ET-26-HCl along with its tissue distribution, excretion and pharmacokinetics in animals after intravenous administration. Ultra-high performance liquid chromatography–tandem quadrupole time-of-flight mass spectrometry identified a total of eight new metabolites after ET-26-HCl biotransformation in liver microsomes from different species. A hypothetical cytochrome P450-metabolic pathway including dehydrogenation, hydroxylation and demethylation was proposed. The PPB rate was highest in mouse and lowest in human. After intravenous administration, ET-26-HCl distributed rapidly to all tissues in rats and beagle dogs, with the highest concentrations in fat and liver. High concentrations of ET-26-acid, a major hydroxylation metabolite of ET-26-HCl, were found in liver, plasma and kidney. Almost complete clearance of ET-26-HCl from plasma occurred within 4 h after administration. Only a small fraction of the parent compound and its acid form were excreted via the urine and faeces. Taken together, the results added to a better understanding of the metabolic and pharmacokinetic properties of ET-26-HCl, which may contribute to the further development of this drug.
Collapse
Affiliation(s)
- Lu Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| | - Xu Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China.,Chengdu Women and Children Central Hospital, Chengdu, Sichuan 610041, People's Republic of China
| | - Wen Sheng Zhang
- Anesthesia and Critical Aid Laboratory, Conversion Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Liang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| | - Wen Wen Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| | - Ming Yu Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| | - Xue Hua Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
14
|
Jiao J, Pan M, Liu X, Liu J, Li B, Chen Q. An Ultrasensitive Non-Enzymatic Sensor for Quantitation of Anti-Cancer Substance Chicoric Acid Based on Bimetallic Nanoalloy with Polyetherimide-Capped Reduced Graphene Oxide. NANOMATERIALS 2020; 10:nano10030499. [PMID: 32164270 PMCID: PMC7153584 DOI: 10.3390/nano10030499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022]
Abstract
Exploiting effective therapies to fight tumor growth is an important part of modern cancer research. The anti-cancer activities of many plant-derived substances are well known, in part because the substances are often extensively distributed. Chicoric acid, a phenolic compound widely distributed in many plants, has drawn widespread attention in recent years because of its extraordinary anti-cancer activities. However, traditional methods for quantifying chicoric acid are inefficient and time-consuming. In this study, an ultrasensitive non-enzymatic sensor for the determination of chicoric acid was developed based on the use of an Au@Pt-polyetherimide-reduced graphene oxide (PEI-RGO) nanohybrid-modified glassy carbon electrode. Owing to the considerable conductivity of PEI-functionalized RGO and the efficient electrocatalytic activity of Au@Pt nanoalloys, the designed sensor exhibited a high capacity for chicoric acid measurement, with a low detection limit of 4.8 nM (signal-to-noise ratio of 3) and a broad linear range of four orders of magnitude. With the advantages provided by the synergistic effects of Au@Pt nanocomposites and PEI-RGO, the developed sensor also revealed exceptional electrochemical characteristics, including superior sensitivity, fast response, acceptable long-term stability, and favorable selectivity. This work provides a powerful new platform for the highly accurate measurement of chicoric acid quantities, facilitating further research into its potential as a cancer treatment.
Collapse
|
15
|
Liu Q, Fang J, Chen P, Die Y, Wang J, Liu Z, Liu X. Chicoric acid improves neuron survival against inflammation by promoting mitochondrial function and energy metabolism. Food Funct 2019; 10:6157-6169. [PMID: 31501849 DOI: 10.1039/c9fo01417a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chicoric acid (CA), a major nutraceutical component of a typical Mediterranean vegetable, chicory, possesses excellent antioxidant and anti-inflammatory bioactivities. This work aimed to elucidate the effects of CA on neuron survival against inflammation and the underlying molecular mechanisms. Results demonstrated that CA promoted SH-SY5Y cells' autophagic vesicle formation, up-regulated autophagic elongation phase related gene expressions, and inhibited apoptosis stimulated by microglial conditioned culture medium (MCM). In addition, CA significantly improved mitochondrial function and regulated redox homeostasis related signaling pathways such as MAPKs and PI3K/AKT. MCM with CA notably increased the expressions of PGC-1α, SIRT1 and enhanced the phosphorylation of AMPK, promoting energy metabolism. On the other hand, the underlying mechanisms of the intervention of CA in MCM-induced cell apoptosis were partly due to its direct protective effect on SH-SY5Y cells and inhibition of microglial inflammatory factor release. This establishes a theoretical foundation for neuro-nutrition intervention studies of natural functional food components, and provides new clues for developing health foods containing CA.
Collapse
Affiliation(s)
- Qian Liu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jie Fang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - PanPan Chen
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yun Die
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Peng Y, Sun Q, Gao R, Park Y. AAK-2 and SKN-1 Are Involved in Chicoric-Acid-Induced Lifespan Extension in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9178-9186. [PMID: 30835107 DOI: 10.1021/acs.jafc.9b00705] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chicoric acid is a dicaffeoyl ester with many bioactivities, including antioxidation, antidiabetes, and anti-inflammation. A previous study reported that chicoric acid extended the lifespan in Caenorhabditis elegans; however, the mechanism behind the effect of chicoric acid on the extended lifespan remains unknown. Consistent with the previous report, chicoric acid (25 and 50 μM) extended the maximum lifespan compared to the control (17.5 ± 3.3 and 15.6 ± 5%, respectively; p < 0.001 for both). The declines of the pumping rate and locomotive activity, two indicators of aging, were delayed by chicoric acid. Moreover, chicoric acid enhanced resistance to oxidative stress in C. elegans. It was further determined that the extended lifespan by chicoric acid was in part via aak-2 [a homologue of adenosine monophosphate (AMP)-activated protein kinase] and skn-1 (a homologue of nuclear factor erythroid 2-related factor 2). The current findings suggest that chicoric acid has the potential to be used as an anti-aging bioactive compound.
Collapse
Affiliation(s)
- Ye Peng
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
- Department of Food Science , University of Massachusetts, Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| | - Quancai Sun
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Ruichang Gao
- School of Food and Biological Engineering , Jiangsu University , 301 Xuefu Road , Zhenjiang , Jiangsu 212013 , People's Republic of China
| | - Yeonhwa Park
- Department of Food Science , University of Massachusetts, Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
17
|
Peng Y, Sun Q, Park Y. The Bioactive Effects of Chicoric Acid As a Functional Food Ingredient. J Med Food 2019; 22:645-652. [DOI: 10.1089/jmf.2018.0211] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ye Peng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Yi Q, Han X, Fan Z, Ma Y, Zhu G, Qiang W, Wang L, Cheng Z. Pharmacokinetics, tissue distribution and plasma protein binding study of SM-1, a novel PAC-1 derivative. J Pharm Biomed Anal 2019; 163:17-23. [PMID: 30273837 DOI: 10.1016/j.jpba.2018.09.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 01/31/2023]
Abstract
As a PAC-1 derivative, SM-1 exhibts a promising antitumour property. To better understand the relationship between the drug concentrations and pharmacological effects, both liquid chromatography coupled with tandem mass spectrometry and high performance liquid chromatography methods were developed and validated in the work. Those methods were then applied to the pharmacokinetics (PK), tissue distribution and plasma protein binding (PPB) studies of SM-1. As a results, the proposed methods were demonstrated to be accurate, precise and stable for the analysis of the SM-1 in plasma and tissue samples. Meanwhile, the PK parameters of SM-1 showed that SM-1 had good PK properties. SM-1 had good absorption in the body, with 59.01% of the absolute bioavailability in rats and 55.63% of that in dogs. SM-1 rapidly distributed to all tissues, with the highest distribution in the lung and less in the brain and muscle. The PPB rates in rat plasma, dog plasma, and human plasma were 91.1%, 91.2%, and 90.7%, respectively. These good PK properties will contribute SM-1 to be a promising anti-tumour candidate. These results also provide insights into the further pharmacological investigation of SM-1.
Collapse
Affiliation(s)
- Qin Yi
- Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, China
| | - Xuhua Han
- Research Institute of Drug Metabolism and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Zhihong Fan
- Hunan Tai Xin Medical Science and Technology Ltd, Changsha, Hunan 410013, China
| | - Yuehui Ma
- Hunan Tai Xin Medical Science and Technology Ltd, Changsha, Hunan 410013, China
| | - Gangzhi Zhu
- Haikou Affiliated Hospital of Xiangya Medical College of Central South University, Haikou, Hainan 570311, China
| | - Wei Qiang
- Research Institute of Drug Metabolism and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Lei Wang
- School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Research Institute of Drug Metabolism and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Zeneng Cheng
- Research Institute of Drug Metabolism and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
19
|
Zhou P, Huang J, Ding W. Effect of Ling-Gui-Zhu-Gan decoction major components on the plasma protein binding of metoprolol using UPLC analysis coupled with ultrafiltration. RSC Adv 2018; 8:35981-35988. [PMID: 35558481 PMCID: PMC9088703 DOI: 10.1039/c8ra07153e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Using traditional Chinese medicine formula Ling-Gui-Zhu-Gan decoction (LGZGD) plus selective β1-adrenergic receptor inhibitor metoprolol to treat arrhythmia of coronary heart disease can significantly improve efficiency with no adverse reactions. However, the effect of major components of LGZGD on the plasma protein binding of metoprolol is unclear. Firstly, this study aimed to computationally predict the molecular interactions between metoprolol, the major components of LGZGD, and bovine serum albumin (BSA). Secondly, the plasma protein binding of metoprolol combined with major components of LGZGD was investigated by UPLC analysis coupled with ultrafiltration. The MOE (2008.10) software package was used to investigate the molecular interactions among metoprolol, the major components of LGZGD, and BSA. Using in vitro experiments, BSA was separately spiked with a mixtures of metoprolol and the major components of LGZGD. The results showed that metoprolol interacted with BSA mainly through arene-arene interactions, as did cinnamic acid and liquiritin. However, the energy scores of cinnamic acid and liquiritin were lower than that of metoprolol. There were no interactions between metoprolol and the major components of LGZGD. Further studies in vitro showed that the presence of the major components of LGZGD did not change the plasma protein binding of metoprolol. We adopted molecular docking to predict the drug-herb plasma protein binding interactions of metoprolol and then used ultrafiltration to verify the docking results. There were no drug-herb interactions between metoprolol and LGZGD in BSA, which indicated that this combination therapy might be safe and feasible.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012 People's Republic of China +86-0551-68129468 +86-0551-68129468
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine Hefei 230012 People's Republic of China
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province Hefei 230012 People's Republic of China
| | - Jinling Huang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012 People's Republic of China +86-0551-68129468 +86-0551-68129468
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine Hefei 230012 People's Republic of China
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province Hefei 230012 People's Republic of China
| | - Wanxue Ding
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012 People's Republic of China +86-0551-68129468 +86-0551-68129468
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine Hefei 230012 People's Republic of China
| |
Collapse
|
20
|
Zhang Q, Huang X, Pu Y, Yi Y, Zhang T, Wang B. pH-sensitive and biocompatible quercetin-loaded GO-PEA-HA carrier improved antitumour efficiency and specificity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S28-S37. [PMID: 30183379 DOI: 10.1080/21691401.2018.1489261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A novel drug carrier was designed based on a new biomaterial, that is, graphene oxide (GO), to improve the efficiency and specificity of anticancer drug. In this study, GO was successively modified with polyetheramine (PEA) and hyaluronic acid (HA). The carrier was utilized to load an antitumor component, that is, quercetin (Que), which was derived from traditional Chinese medicine, namely the pagoda tree flower bud. This drug delivery system (DDS) exhibited pH sensibility under subacid condition and good biocompatibility even when GO concentration reached 350 μg/mL. Moreover, the antitumor efficacy was doubly improved and more long-acting compared with Que alone. Results show that the GO-based material has potential clinical applications for antitumor drug delivery.
Collapse
Affiliation(s)
- Qi Zhang
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xing Huang
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yiqiong Pu
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yaxiong Yi
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Tong Zhang
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Bing Wang
- a Experiment Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
21
|
Guo N, Xu X, Yuan G, Chen X, Wen Q, Guo R. Pharmacokinetic, metabolic profiling and elimination of brusatol in rats. Biomed Chromatogr 2018; 32:e4358. [PMID: 30089336 DOI: 10.1002/bmc.4358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Brusatol, a quassinoid isolated from the traditional Chinese medicine Brucea javanica, has been reported to be an inhibitor of Nrf2 pathway and has great potential to be developed into a novel chemotherapeutic adjuvant. However, the in vivo process of brusatol has not been comprehensively explained yet. Therefore, this paper focused on the pharmacokinetic metabolism and excretion of brusatol in rats using a simple and reproducible LC-MS/MS method. The results indicated that the plasma concentration of brusatol decreased rapidly; the average cumulative excretion rate in urine was 5.82% during 24 h, and 0.71% in bile during 12 h. High-resolution mass spectrometry was applied for the identification of metabolites; as a result, four metabolites were detected and the structure was tentatively deduced on the base of the MS2 data, Compound Discoverer 2.0 and Mass Frontier 7.0 software. Hydroxylation, hydrolysis and glucuronidation were suggested as major metabolic pathways in vivo. The in vivo process and detection of metabolites of brusatol might improve the understanding of the mechanism of its anticancer effect and provide valuable information for its safety estimation, which will be essential to the new drug development.
Collapse
Affiliation(s)
- Nan Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Xu
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Guiyan Yuan
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Xuwang Chen
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Wen
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Ruichen Guo
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
22
|
Zong S, Pu Y, Li S, Xu B, Zhang Y, Zhang T, Wang B. Beneficial anti-inflammatory effect of paeonol self-microemulsion-loaded colon-specific capsules on experimental ulcerative colitis rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:324-335. [DOI: 10.1080/21691401.2017.1423497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Shiyu Zong
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqiong Pu
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suyun Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benliang Xu
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Zhang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Li M, Chen X, Hu S, Wang R, Peng X, Bai X. Determination of blood concentrations of main active compounds in Zi-Cao-Cheng-Qi decoction and their total plasma protein binding rates based on hollow fiber liquid phase microextraction coupled with high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1072:355-361. [DOI: 10.1016/j.jchromb.2017.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
|
24
|
Zhang Q, Guan J, Li S, Zhao Y, Yu Z. Application of an UHPLC–MS/MS method to tissue distribution and excretion study of 2-(2-hydroxypropanamido) benzoic acid in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1070:54-61. [DOI: 10.1016/j.jchromb.2017.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 01/03/2023]
|
25
|
Lu QB, Wan MY, Wang PY, Zhang CX, Xu DY, Liao X, Sun HJ. Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol 2017; 14:656-668. [PMID: 29175753 PMCID: PMC5716955 DOI: 10.1016/j.redox.2017.11.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Phenotypic switch of vascular smooth muscle cells (VSMCs) is characterized by increased expressions of VSMC synthetic markers and decreased levels of VSMC contractile markers, which is an important step for VSMC proliferation and migration during the development and progression of cardiovascular diseases including atherosclerosis. Chicoric acid (CA) is identified to exert powerful cardiovascular protective effects. However, little is known about the effects of CA on VSMC biology. Herein, in cultured VSMCs, we showed that pretreatment with CA dose-dependently suppressed platelet-derived growth factor type BB (PDGF-BB)-induced VSMC phenotypic alteration, proliferation and migration. Mechanistically, PDGF-BB-treated VSMCs exhibited higher mammalian target of rapamycin (mTOR) and P70S6K phosphorylation, which was attenuated by CA pretreatment, diphenyleneiodonium chloride (DPI), reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC) and nuclear factor-κB (NFκB) inhibitor Bay117082. PDGF-BB-triggered ROS production and p65-NFκB activation were inhibited by CA. In addition, both NAC and DPI abolished PDGF-BB-evoked p65-NFκB nuclear translocation, phosphorylation and degradation of Inhibitor κBα (IκBα). Of note, blockade of ROS/NFκB/mTOR/P70S6K signaling cascade prevented PDGF-BB-evoked VSMC phenotypic transformation, proliferation and migration. CA treatment prevented intimal hyperplasia and vascular remodeling in rat models of carotid artery ligation in vivo. These results suggest that CA impedes PDGF-BB-induced VSMC phenotypic switching, proliferation, migration and neointima formation via inhibition of ROS/NFκB/mTOR/P70S6K signaling cascade. Chicoric acid attenuated PDGF-BB-evoked VSMC phenotypic transformation, proliferation and migration. Chicoric acid antagonized the activated ROS/NFκB/mTOR/P70S6K signaling pathway in VSMCs. Chicoric acid treatment prevented intimal hyperplasia in rat models of carotid artery ligation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Ming-Yu Wan
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pei-Yao Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chen-Xing Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Dong-Yan Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiang Liao
- Department of Medical Imaging, General Hospital of Nanjing Military Area Command, Nanjing, Jiangsu 210002, PR China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
26
|
Liu Q, Hu Y, Cao Y, Song G, Liu Z, Liu X. Chicoric Acid Ameliorates Lipopolysaccharide-Induced Oxidative Stress via Promoting the Keap1/Nrf2 Transcriptional Signaling Pathway in BV-2 Microglial Cells and Mouse Brain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:338-347. [PMID: 28002939 DOI: 10.1021/acs.jafc.6b04873] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As a major nutraceutical component of a typical Mediterranean vegetable chicory, chicoric acid (CA) has been well-documented due to its excellent antioxidant and antiobesity bioactivities. In the current study, the effects of CA on lipopolysaccharide (LPS)-stimulated oxidative stress in BV-2 microglia and C57BL/6J mice and the underlying molecular mechanisms were investigated. Results demonstrated that CA significantly reversed LPS-elicited cell viability decrease, mitochondrial dysfunction, activation of NFκB and MAPK stress pathways, and inflammation responses via balancing cellular redox status. Furthermore, molecular modeling study demonstrated that CA could insert into the pocket of Keap1 and up-regulated Nrf2 signaling and, thus, transcriptionally regulate downstream expressions of antioxidant enzymes including HO-1 and NQO-1 in both microglial cells and ip injection of LPS-treated mouse brain. These results suggested that CA attenuated LPS-induced oxidative stress via mediating Keap1/Nrf2 transcriptional pathways and downstream enzyme expressions, which indicated that CA has great potential as a nutritional preventive strategy in oxidative stress-related neuroinflammation.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Yaya Hu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Youfang Cao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Ge Song
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University , Yangling, China
| |
Collapse
|
27
|
Zhu D, Zhang N, Zhou X, Zhang M, Liu Z, Liu X. Cichoric acid regulates the hepatic glucose homeostasis via AMPK pathway and activates the antioxidant response in high glucose-induced hepatocyte injury. RSC Adv 2017. [DOI: 10.1039/c6ra25901d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CA regulates hepatic glucose homeostasisviathe AMPK pathway and improves hepatocyte injuryviaantioxidant responsein vitroandin vivo.
Collapse
Affiliation(s)
- Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Ni Zhang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xuelian Zhou
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Mengying Zhang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
28
|
Wang Y, Diao Z, Li J, Ren B, Zhu D, Liu Q, Liu Z, Liu X. Chicoric acid supplementation ameliorates cognitive impairment induced by oxidative stress via promotion of antioxidant defense system. RSC Adv 2017. [DOI: 10.1039/c7ra06325c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Illustration of effects of chicoric acid on neuroprotection againstd-gal-induced memory impairmentviainflammation and oxidative stress.
Collapse
Affiliation(s)
- Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Zhijun Diao
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Jing Li
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
29
|
Liu Q, Chen Y, Shen C, Xiao Y, Wang Y, Liu Z, Liu X. Chicoric acid supplementation prevents systemic inflammation‐induced memory impairment and amyloidogenesis via inhibition of NF‐κB. FASEB J 2016; 31:1494-1507. [DOI: 10.1096/fj.201601071r] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Qian Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yuwei Chen
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Chun Shen
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yating Xiao
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Yutang Wang
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of FoodCollege of Food Science and Engineering, Northwest A&F University Yangling China
| |
Collapse
|