1
|
Jakabfi-Csepregi R, Alberti Á, Felegyi-Tóth CA, Kőszegi T, Czigle S, Papp N. A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. PLANTS (BASEL, SWITZERLAND) 2024; 13:232. [PMID: 38256785 PMCID: PMC10821300 DOI: 10.3390/plants13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In this study, in vitro antioxidant, antimicrobial, cytotoxic, and cell migration effects of phenolic compounds of Lathyrus tuberosus leaves, known in the Transylvanian ethnomedicine, were investigated. Ultra-high-performance liquid chromatography-tandem mass spectrometry was employed for the analysis of the ethanolic and aqueous extracts. The antimicrobial properties were determined using a conventional microdilution technique. Total antioxidant capacity techniques were used using cell-free methods and cell-based investigations. Cytotoxic effects were conducted on 3T3 mouse fibroblasts and HaCaT human keratinocytes using a multiparametric method, assessing intracellular ATP, total nucleic acid, and protein levels. Cell migration was visualized by phase-contrast microscopy, employing conventional culture inserts to make cell-free areas. Together, 93 polyphenolic and monoterpenoid compounds were characterized, including flavonoid glycosides, lignans, hydroxycinnamic acid, and hydroxybenzoic acid derivatives, as well as iridoids and secoiridoids. The ethanolic extract showed high antioxidant capacity and strong antimicrobial activity against Bacillus subtilis (MIC80 value: 354.37 ± 4.58 µg/mL) and Streptococcus pyogenes (MIC80 value: 488.89 ± 4.75 µg/mL). The abundance of phenolic compounds and the results of biological tests indicate the potential for L. tuberosus to serve as reservoirs of bioactive compounds and to be used in the development of novel nutraceuticals.
Collapse
Affiliation(s)
- Rita Jakabfi-Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Ágnes Alberti
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| |
Collapse
|
2
|
Moharana M, Pattanayak SK, Khan F. Bioactive compounds from Pandanous fascicularis as potential therapeutic candidate to tackle hepatitis a inhibition: Docking and molecular dynamics simulation study. J Biomol Struct Dyn 2023; 41:10478-10494. [PMID: 36541128 DOI: 10.1080/07391102.2022.2158940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Due to extensive pharmacological research, medicinal plants the underpinning of indigenous herbal serve as a possible source of key compounds for the development of new drugs. Hepatitis A, one of the most widespread infectious diseases associated with global public health issues. The transmission of hepatitis A virus (HAV) occurs, through personal contact, as well as contaminated food/water. The HAV 3C cysteine protease is a non-structural protein, plays pivotal role in proliferation and viral replication. Significant phytochemicals of Pandanous fascicularis include phytosterol, kobusin, epipinoresinol, and ceroptene, which have a wide variety of biological functions. Through ADMET investigation, we have screened fifteen phytochemicals for this study. Additionally, using molecular docking, these phytochemicals were docked with the HAV 3C protease which signifies the phytochemicals phytosterol, kobusin, epipinoresinol, and ceroptene have a significant capability to bind with hepatitis A virus protein.The docking study was further accompanied by analyzes RMSD, RMSF, Rg, SASA, H-bond number, and principal component analysis through 100 ns MD simulations. The molecular dynamics study reveals that, all four phytochemicals possess considerable binding efficacy with hepatitis A virus protein. Based on our computational study and MMGBSA calculations, phytosterol, kobusin and epipinoresinol phytochemicals may be a potential drug candidate for inhibition of hepatitis A. The potential therapeutic characteristics of the phytochemicals against hepatitis A inhibition offer additional support for the in vitro and in vivo studies in future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maheswata Moharana
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | | - Fahmida Khan
- Department of Chemistry, National Institute of Technology, Raipur, India
| |
Collapse
|
3
|
Patyra A, Kołtun-Jasion M, Jakubiak O, Kiss AK. Extraction Techniques and Analytical Methods for Isolation and Characterization of Lignans. PLANTS 2022; 11:plants11172323. [PMID: 36079704 PMCID: PMC9460740 DOI: 10.3390/plants11172323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Lignans are a group of natural polyphenols present in medicinal plants and in plants which are a part of the human diet for which more and more pharmacological activities, such as antimicrobial, anti-inflammatory, hypoglycemic, and cytoprotective, are being reported. However, it is their cytotoxic activities that are best understood and which have shed light on this group. Two anticancer drugs, etoposide, and teniposide, were derived from a potent cytotoxic agent—podophyllotoxin from the roots of Podophyllum peltatum. The evidence from clinical and observational studies suggests that human microbiota metabolites (enterolactone, enterodiol) of dietary lignans (secoisolariciresinol, pinoresinol, lariciresinol, matairesinol, syringaresinol, medioresinol, and sesamin) are associated with a reduced risk of some hormone-dependent cancers. The biological in vitro, pharmacological in vivo investigations, and clinical studies demand significant amounts of pure compounds, as well as the use of well-defined and standardized extracts. That is why proper extract preparation, optimization of lignan extraction, and identification are crucial steps in the development of lignan use in medicine. This review focuses on lignan extraction, purification, fractionation, separation, and isolation methods, as well as on chromatographic, spectrometric, and spectroscopic techniques for their qualitative and quantitative analysis.
Collapse
Affiliation(s)
- Andrzej Patyra
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| | - Małgorzata Kołtun-Jasion
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Oktawia Jakubiak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| |
Collapse
|
4
|
GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea. Molecules 2022; 27:molecules27134109. [PMID: 35807354 PMCID: PMC9268025 DOI: 10.3390/molecules27134109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, β-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of −19.93 and −16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.
Collapse
|
5
|
Luo Z, Liu D, Pang X, Yang W, He J, Zhang R, Zhu C, Chen Y, Li X, Zhang J, Shi J, Abliz Z. Whole-body spatially-resolved metabolomics method for profiling the metabolic differences of epimer drug candidates using ambient mass spectrometry imaging. Talanta 2019; 202:198-206. [PMID: 31171170 DOI: 10.1016/j.talanta.2019.04.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Investigation of the in vivo drug action and metabolic differences of epimer drugs is challenging. Whole-body MSI analysis can visually present the stereoscopic distribution of molecules related to the interaction of drugs and organisms, and can provide more comprehensive organ-specific profiling information. Herein, we developed a whole-body spatially-resolved imaging metabolomics method based on an air flow-assisted ionisation desorption electrospray ionisation (AFADESI)-MSI system coupled with a high-resolution mass spectrometer and highly discriminating imaging software. The epimeric sedative-hypnotic drug candidates YZG-331 and YZG-330 were selected as examples, and rats administered normal or high oral doses were used. By performing multivariate statistical data-mining on the combined MSI data, organ-specific differential ions were screened. By comparing the variations in the relative contents of the drugs, their metabolites, and endogenous neurotransmitters throughout whole-body tissue sections of the rats, rich information that could potentially explain the more significant sedative-hypnotic effects of YZG-330 compared to YZG-331 was obtained. Such as the increased ratio of gamma-aminobutyric acid in the brain and stomach of the rats (0.25, 0.47, 0.68, 0.30, and 0.89 for the control and YZG-331-H, YZG-330-H, YZG-331-L, and YZG-330-L, respectively) were interesting. This study provided a convenient and visual method to investigate in vivo molecular metabolic differences and provide insight towards a better understanding of the pharmacodynamic mechanisms of these sedative-hypnotic drug-candidates.
Collapse
Affiliation(s)
- Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xuechao Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Wanqi Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chenggen Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jianjun Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China; Center for Imaging and Systems Biology, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
6
|
Li S, Liu C, Liu C, Zhang Y. Extraction and in vitro screening of potential acetylcholinesterase inhibitors from the leaves of Panax japonicus. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:139-145. [PMID: 28734162 DOI: 10.1016/j.jchromb.2017.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
Abstract
Ultrafiltration liquid chromatography-mass spectrometry (UFLC-MS) is an efficient method that can be applied to rapidly screen and identify ligands for acetylcholinesterase (AChE) from the leaves of Panax japonicus. Using this method, we identified 5 major compounds, chikusetsusaponins V, Ib, IV, IVa, and IVa ethyl ester, as potent AChE inhibitors, which were assessed for anti-Alzheimer disease activity using the PC12 cell model. A continuous online method, which consisted of microwave-assisted extraction, a solvent concentration tank, and centrifugal partition chromatography (MAE-SCT-CPC), was newly developed for scaled up production of these compounds with high purity and efficiency. The bioactivities of the compounds separated were assessed by the PC12 cell model. This novel approach of using UFLC-MS coupled with MAE-SCT-CPC and a PC12 cell model could be applied to efficiently screen, extract, and separate AChE inhibitors from complex samples, and could serve as an important platform for the large-scale production of functional food and nutraceutical ingredients.
Collapse
Affiliation(s)
- Sainan Li
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun 130032, China
| | - Chengyu Liu
- Clinical Department of Rehabilitation, College of Acupuncture and Massage, Changchun University of Traditional Chinese Medicine, Changchun 130117, China.
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun 130032, China.
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, No. 677 North Chang-ji Road, Changchun 130032, China
| |
Collapse
|