1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2025; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhou J, Hu Y, Chen P, Zhang H. Preparation of restricted access monolithic tip via unidirectional freezing and atom transfer radical polymerization for directly extracting magnolol and honokiol from rat plasma followed by liquid chromatography analysis. J Chromatogr A 2020; 1625:461238. [PMID: 32709314 DOI: 10.1016/j.chroma.2020.461238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023]
Abstract
In the present study, a novel strategy based on unidirectional freezing and atom transfer radical polymerization combined with activator regenerated by electron transfer (ARGET-ATRP) was applied to synthesizing orderly macroporous monolithic column with restricted-access (RA) property in a 1000μL pipette tip. The RA column was composed of hydrophobic inner column (poly(styrene-co-ethylene glycol dimethacrylate) and hydrophilic outer layer (poly-hydroxyethyl methacrylate chain) which was grafted on the hydrophobic surface by means of the second ARGET-ATRP reaction. The as-prepared RA monolithic tip was connected to a 2mL syringe for directly extracting magnolol and honokiol from rat plasma just by manually pushing operation. The surface morphology and chemical composition of the column were characterized by scanning electronic microscope, infrared spectroscopy and X-ray photoelectron spectroscopy respectively. The determined results of evaluation experiments based on the optimized solid phase extraction conditions showed that the RA column possessed good protein exclusion power, extraction recovery and reusability. The constructed RA-SPE-HPLC/UV method for simultaneously analyzing magnolol and honokiol in rat plasma was validated with quality control (QC) samples at four concentration levels. Good precision (RSDs, 3.39~11.16%) and acceptable accuracy (relative recoveries, 89.52%~108.42%) were obtained for intra- and inter-day assays. The determined results of real rat plasma as well as the standard-addition samples demonstrated the developed method with good accuracy and precision. It can be extrapolated from the experimental results that this simple and cost-efficient RA-SPE method is also suitable for directly extracting other hydrophobic constituents in biological body fluid for therapeutic drug monitoring or pharmacokinetic study.
Collapse
Affiliation(s)
- Jingwei Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yaoyao Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peichun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwu Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ma C, Guan H, Ju Z, Li S, Deng G, Zhang Y, Lin Q, Cheng X, Yang L, Wang Z, Wang C. Identification and characterization of forced degradation products and stability-indicating assay for notoginsenosidefc by using UHPLC-Q-TOF-MS and UHPLC-MS/MS: Insights into stability profile and degradation pathways. J Sep Sci 2019; 42:1550-1563. [DOI: 10.1002/jssc.201801295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Zhengcai Ju
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Qiyan Lin
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai P. R. China
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai P. R. China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai P. R. China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai P. R. China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai P. R. China
| |
Collapse
|
4
|
Liu X, Feng J, Li Y. Preparation of carbon-functionalized magnetic graphene/mesoporous silica composites for selective extraction of miglitol and voglibose in rat plasma. Talanta 2018; 182:405-413. [DOI: 10.1016/j.talanta.2018.01.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/14/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
|