1
|
Sun L, Tian W, Fang Y, Yang W, Hu Q, Pei F. Rapid and simultaneous extraction of phthalates, polychlorinated biphenyls and polycyclic aromatic hydrocarbons from edible oil for GC–MS determination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
2
|
Nualdee K, Buain R, Janchawee B, Sukree W, Thammakhet-Buranachai C, Kanatharana P, Chaisiwamongkhol K, Prutipanlai S, Phonchai A. A stir bar sorptive extraction device coupled with a gas chromatography flame ionization detector for the determination of abused prescription drugs in lean cocktail samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2557-2568. [PMID: 35699255 DOI: 10.1039/d2ay00603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A lean cocktail is a mixed drink for the non-medical use of prescription medications that has emerged in recent years as a drug of abuse and is related to drug-facilitated crimes. The determination of active ingredients in a lean cocktail is necessary for forensic investigations. This work presents an in-house developed stir bar sorptive extraction (SBSE) device with an XAD-2 adsorbent followed by analysis using GC-FID for the extraction and determination of the five main abused prescription drugs (diphenhydramine, tramadol, chlorpheniramine, dextromethorphan and promethazine) in lean cocktail samples. Under optimized conditions, the developed method provided linearity for 1.0-250 μg mL-1 of each of the five abused prescription drugs. The limits of detection and limits of quantitation were in the respective ranges of 0.25-0.5 μg mL-1 and 1.0-1.5 μg mL-1. The percentage of extraction was 85.0-94.9%. The intra-day and inter-day precisions were 1.2-14.4% RSD and 1.4-15.8% RSD, respectively. Good relative recoveries in the range of 86.7-110.3% and 88.5-107.9% were obtained when the proposed method was applied for extraction and analysis of abused prescription drugs in five lean cocktail samples. The developed method can be a useful tool for measuring the levels of abused prescription drugs in a lean cocktail and the data could also be used as evidence in a forensic investigation.
Collapse
Affiliation(s)
- Kamonwan Nualdee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Ratchaneekorn Buain
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Benjamas Janchawee
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Warakorn Sukree
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chongdee Thammakhet-Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Korbua Chaisiwamongkhol
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sathaporn Prutipanlai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| | - Apichai Phonchai
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
- Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
3
|
An J, Dong Z, Zhang W, Yan Y, Kang W, Lian K. Development of a simple nanofiber-based solid phase extraction procedure coupled with high performance liquid chromatography analysis for the quantification of eight sedative-hypnotic drugs in human urine samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Huelsmann RD, Will C, Carasek E. Novel strategy for disposable pipette extraction (DPX): Low-cost Parallel-DPX for determination of phthalate migration from common plastic materials to saliva simulant with GC-MS. Talanta 2021; 221:121443. [PMID: 33076068 DOI: 10.1016/j.talanta.2020.121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
In widespread use in commercial products as plasticizers, phthalic acid esters (phthalates) have worried researchers and society in general, given the negative impacts on living organisms, especially human health. Since they are not chemically linked to the polymeric matrix, their migration is evident for samples that come into contact with plastics that contain them, such as water, food and saliva. In this work, a new strategy is described, named parallel-disposable pipette extraction (Pa-DPX), in a fast, efficient and robust analytical method using five simultaneous extractions for the determination of migration of 6 phthalates from common plastic materials (children's toys, school supplies, dog toys and oral contact items) to saliva simulant, using gas chromatography-mass spectrometry (GC-MS). The optimized conditions were 5 extraction cycles with 1600 μL of saliva simulant and desorption with 200 μL of ethyl acetate using 5 cycles with the same aliquot. The calibration curves resulted in determination coefficients higher than 0.9915, limits of detection at 1.5 μg L-1, and the quantification limits were 5.0 μg L-1. Excellent results were obtained for repeatability (relative standard deviation ranging from 8.7% to 20.1% for 5 μg L-1) and intermediate precision, varying the day of analyses (7.9%-16.2%). The analyte recovery ranged from 75% to 114% for two different samples, in four different levels of concentration. The Pa-DPX-GC-MS method was successfully applied to determine the migration of PAE from 21 samples. At least one PAE was detected in 81% of samples, and di-n-octyl phthalate was found in higher concentration, achieving the migration of almost 30 μg per g of sample.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040900, Brazil.
| |
Collapse
|
6
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
7
|
Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, Chen J, Huo S, Zhang Z, Du P, Lu X. Electrochemiluminescence Platforms Based on Small Water‐Insoluble Organic Molecules for Ultrasensitive Aqueous‐Phase Detection. Angew Chem Int Ed Engl 2019; 58:5915-5919. [DOI: 10.1002/anie.201814507] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Heshui Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yali Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaofang Ma
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jing Chen
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Shuhui Huo
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistryTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
8
|
Zeng J, Gan N, Zhang K, He L, Lin J, Hu F, Cao Y. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods. Talanta 2019; 199:491-498. [PMID: 30952289 DOI: 10.1016/j.talanta.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/21/2022]
Abstract
It's important to eliminate matrix interference for accurate detecting antibiotic residues in complex food samples. In this study, we designed a zero-backgrounded fluorescence aptasensor to achieve on-site detection of antibiotic residues, with chloramphenicol (CAP) as representative analyte. Moreover, a three stir-bars assisted target recycling system (TSBTR) was designed to achieve triple signal amplification and increase the sensitivity. The bars included one magnetic stir-bar modified with two kinds of long DNA chains, and two gold stir-bars modified with Y shape-duplex DNA probes respectively. In the presence of CAP, the target could recurrently react with the probes on the bars and replace a large amount of long DNA chains into supernatant. After then, the bars were taken out and SYBR green dye was added to the solution. The dye can specifically intercalate into the duplex structures of DNA chains to emit fluorescence while not emitting a signal in its free state. Under the optimized experimental conditions, a wide linear response range of 5 orders of magnitude from 0.001 ng mL-1 to 10 ng mL-1 was achieved with a detection limit of 0.033 pg mL-1 CAP. The assay was successfully employed to detect CAP in food samples (milk & fish) with consistent results with ELISA's. High selectivity and sensitivity were attributed to the zero background signal and triple signal-amplification strategy. Moreover, the detection time can be shortened to 40 min due to that three signal amplified process can occur simultaneously. The fluorescent aptasensor was also label- and enzyme-free. All these ensure the platform to be rapid, cost-effective, easily-used, and is especially appropriate for detection antibiotics in food safety.
Collapse
Affiliation(s)
- Jin Zeng
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Ning Gan
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China.
| | - Kai Zhang
- Faculty of marine, Ningbo University, Ningbo 315211, China
| | - Liyong He
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| | - Jianyuan Lin
- School of food and environment, Zhejiang wanli university, Ningbo 315200, China
| | - Futao Hu
- Faculty of marine, Ningbo University, Ningbo 315211, China.
| | - Yuting Cao
- Faculty of material science and chemical engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Tang Z, Han Q, Xie L, Chu L, Wang Y, Sun Y, Kang X. Simultaneous determination of five phthalate esters and bisphenol A in milk by packed-nanofiber solid-phase extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2019; 42:851-861. [DOI: 10.1002/jssc.201800811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Zigang Tang
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Qing Han
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Li Xie
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Lanling Chu
- Key Laboratory of Environmental Medicine and Engineering (Ministry of Education); School of Public Health; Southeast University; Nanjing P. R. China
| | - Yu Wang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Ying Sun
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| | - Xuejun Kang
- Key Laboratory of Child Development and Learning Science (Ministry of Education); School of Biological Sciences & Medical Engineering; Southeast University; Nanjing P. R. China
| |
Collapse
|