1
|
Tkalec Ž, Runkel AA, Kosjek T, Horvat M, Heath E. Contaminants of emerging concern in urine: a review of analytical methods for determining diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95106-95138. [PMID: 37597142 PMCID: PMC10482756 DOI: 10.1007/s11356-023-29070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Human biomonitoring (HBM) frameworks assess human exposure to hazardous chemicals. In this review, we discuss and summarize sample preparation procedures and analytical methodology for six groups of chemicals of emerging concern (CECs), namely diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers, which are increasingly detected in urine, however, are not yet widely included in HBM schemes, despite posing a risk to human health. The sample preparation procedures depend largely on the chemical group; however, solid-phase extraction (SPE) is most often used due to the minimized sample handling, lower sample volume, and generally achieving lower limits of quantification (LOQs) compared to other extraction techniques. In terms of sample analysis, LC-based methods generally achieve lower limits of quantification (LOQs) compared to GC-based methods for the selected six groups of chemicals owing to their broader chemical coverage. In conclusion, since these chemicals are expected to be more frequently included in future HBM studies, it becomes evident that there is a pressing need for rigorous quality assurance programs to ensure better comparability of data. These programs should include the reporting of measurement uncertainty and facilitate inter-laboratory comparisons among the reporting laboratories. In addition, high-resolution mass spectrometry should be more commonly employed to enhance the specificity and selectivity of the applied analytical methodology since it is underrepresented in HBM. Furthermore, due to the scarcity of data on the levels of these CECs in urine, large population HBM studies are necessary to gain a deeper understanding of the associated risks.
Collapse
Affiliation(s)
- Žiga Tkalec
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Roegner N, Pluym N, Peschel O, Leibold E, Kachhadia A, Scherer G, Scherer M. Determination of a specific metabolite for the non-ionic surfactant 2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123584. [PMID: 36640715 DOI: 10.1016/j.jchromb.2022.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
2,4,7,9-Tetramethyldec-5-yne-4,7-diol (TMDD) is a non-ionic surfactant commonly used as defoaming agent and numerous other applications. Effluents of wastewater treatment plants have been identified as one of the main sources of TMDD emissions into the environment. Due to its broad application in various fields, TMDD was selected for the development of a biomonitoring method for assessing human exposure within the frame of the cooperation project of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) and the German Chemical Industry Association (VCI) in 2020. This study aimed to identify a urinary metabolite for TMDD by UPLC-Q-Orbitrap-MS which can be used as a biomarker of TMDD exposure. Monohydroxylated TMDD (1-OH-TMDD) was deciphered as the most prominent metabolite of TMDD in humans in a series of in vitro and in vivo experiments. In a next step, a quantitative method for the determination of 1-OH-TMDD was developed and validated. Quantification was achieved by isotope dilution using D3-1-OH-TMDD as internal standard. The method is characterized by a simple sample clean-up procedure and an enzymatic hydrolysis of possible metabolite conjugates with ß-glucuronidase. Method validation was performed according to international guidelines for bioanalytical method validation. The method proved its robustness, precision, accuracy and sensitivity for the intended purpose, i.e. the assessment of TMDD exposure in the general population by means of human biomonitoring.
Collapse
Affiliation(s)
- Nadine Roegner
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Oliver Peschel
- Institut für Rechtsmedizin der Universität München, Nussbaumstr. 26, 80336 Munich, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, 67056 Ludwigshafen, Germany
| | - Alpeshkumar Kachhadia
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany.
| |
Collapse
|
3
|
Jäger T, Bäcker S, Brodbeck T, Leibold E, Bader M. Quantitative determination of urinary metabolites of geraniol by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5718-5728. [PMID: 33220670 DOI: 10.1039/d0ay01582b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Geraniol is a fragrance which occurs in natural terpene oil or is chemically synthesized on a large scale. It is used in a wide variety of consumer products such as perfumes, deodorants, household products and cosmetics. Hence, not only industry workers in the production of geraniol, but also consumers can come into contact with the substance. Human biomonitoring (HBM), i.e. the analytical determination of substances and their metabolites in human biological material, is a key element in the analysis and assessment of the distribution and intensity of occupational and environmental exposure of humans. Therefore, a procedure for the quantitative determination of the urinary metabolites Hildebrandt acid, geranic acid, 3-hydroxycitronellic acid and 8-carboxygeraniol as potential biomarkers of geraniol exposure was developed and validated. The method is based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) after enzymatic hydrolysis and liquid-liquid extraction (LLE) of the target analytes. The limit of quantification (LOQ) is 1.5 μg L-1 for 8-carboxygeraniol, 2.7 μg L-1 each for Hildebrandt acid and geranic acid, and 1.8 μg L-1 for 3-hydroxycitronellic acid. The method was applied to urine samples of 41 persons without occupational exposure to geraniol. Hildebrandt acid and geranic acid were detected in all samples, 8-carboxygeraniol in 83% and 3-hydroxycitronellic acid in 81% of the samples. Hildebrandt acid (median: 313 μg L-1, range: 37-1966 μg L-1) was the most abundant metabolite, followed by geranic acid (93 μg L-1; 9-477 μg L-1), 3-hydroxycitronellic acid (18 μg L-1; <LOQ to 70 μg L-1) and 8-carboxygeraniol (9 μg L-1; <LOQ to 46 μg L-1). Hildebrandt acid, geranic acid and 3-hydroxycitronellic acid apparently represent larger relative fractions of the eliminated metabolites, but they are not strictly specific for geraniol since they are metabolites of other terpenes as well, such as citral. In contrast, geraniol seems to be the only parent compound for 8-carboxygeraniol, which makes this metabolite a promising candidate for specific human biomonitoring and risk assessment.
Collapse
Affiliation(s)
- Thomas Jäger
- BASF SE, Corporate Health Management, Ludwigshafen, Germany.
| | | | | | | | | |
Collapse
|
4
|
Pluym N, Petreanu W, Weber T, Scherer G, Scherer M, Kolossa-Gehring M. Biomonitoring data on young adults from the Environmental Specimen Bank suggest a decrease in the exposure to the fragrance chemical 7-hydroxycitronellal in Germany from 2000 to 2018. Int J Hyg Environ Health 2020; 227:113508. [PMID: 32172157 DOI: 10.1016/j.ijheh.2020.113508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/17/2022]
Abstract
7-Hydroxy-3,7-dimethyl-1-octanal, also known as 7-hydroxycitronellal (7-HC, CAS No. 107-75-5) is a synthetic fragrance widely used in cosmetic and hygiene products. Because of its wide spread use and its known sensitizing properties, 7-HC was selected as one of 50 chemicals within the frame of the cooperation project between the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and the German Chemical Industry Association (VCI) to develop a suitable human biomonitoring (HBM) method in order to assess the exposure of the general population in Germany. Within this scope, the recently published analytical method for urinary 7-hydroxycitronellylic acid (7-HCA), the major metabolite of 7-HC, was applied to 329 24h-urine samples of young adults (20 to 29 years) collected between 2000 and 2018 and stored in the Environmental Specimen Bank (ESB). The widespread exposure to 7-HC as already observed in a pilot study with 40 volunteers could be confirmed with quantifiable concentrations of 7-HCA in all 329 study samples (mean: 14.9 ng/mL; median: 8.1 ng/mL). A significant, chronological decrease in 7-HCA levels was found for the monitored years (2000, 2004, 2008, 2012, 2015, 2018). The most pronounced decline occurred between 2000 and 2004 (means: 34.37 versus 23.31, medians: 20.97 versus 12.49 μg/24h; p < 0.01). On average, females exhibited higher levels of urinary 7-HCA compared to males (29.34 versus 17.21 μg/24h, p < 0.05). Based on the urinary 7-HCA excretion, the daily intake (DI) of 7-HC normalized for body weight (bw) was estimated. Over all sampling years, average DI in females was significantly higher compared to males (0.99 versus 0.46 μg/kg bw/d). Assuming dermal exposure as the main route of 7-HC intake, the mean DIs correspond to <0.1% of the derived no effect level (DNEL) of 1,100 μg/kg bw/d defined by the European Chemical Agency (ECHA). The presented results for the exposure to the widely used fragrance 7-HC in Germany can be substantiated by applying the described methodology to the representative cohort of the launched German Environmental Survey in adults (GerES VI).
Collapse
Affiliation(s)
- Nikola Pluym
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Wolf Petreanu
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Max Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany.
| | | |
Collapse
|
5
|
Human metabolism and excretion kinetics of the fragrance 7-hydroxycitronellal after a single oral or dermal dosage. Int J Hyg Environ Health 2018; 221:239-245. [DOI: 10.1016/j.ijheh.2017.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022]
|