1
|
Qin Q, Liu X, Wang X, Zhou L, Wan H, Yin Q, Chen D. Facile Synthesis of Aptamer-Functionalized Polydopamine-Coated Magnetic Graphene Oxide Nanocomposites for Highly Efficient Purification of His-Tagged Proteins. J Sep Sci 2024; 47:e202400471. [PMID: 39319600 DOI: 10.1002/jssc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Recombinant proteins hold significant importance in numerous disciplines. As the demand for expressing and purifying these proteins grows, the scientific community is in dire need of a simple yet versatile methodology that can efficiently purify these proteins. Aptamers as synthetic nucleic acid-based ligands with high affinity have shown promise in this regard, as they can capture targets through molecular recognition. In this study, novel aptamer-functionalized polydopamine-coated magnetic graphene oxide nanocomposites were facilely prepared, achieving an impressive average aptamer coverage density (45 nmol/mg). These nanocomposites exhibited a uniform structure and robust magnetic responsiveness. The findings indicated that they possess several advantages, such as rapid adsorption, substantial capacity (171.4 mg/g), and excellent reusability. Notably, due to the inherent properties of nucleic acids, the immobilized aptamer-magnetic beads can be utilized repeatedly with high purification efficiency. Finally, the nanocomposites were further employed to purify His-tagged proteins from actual samples. Remarkably, they were able to selectively and efficiently isolate His-tagged retinoid X receptor alpha protein from complex Escherichia coli lysate. The purified His-tagged retinoid X receptor alpha protein was analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This confirmed the efficacy of developed nanocomposites, reinforcing their vast potential for purification of His-tagged recombinant proteins.
Collapse
Affiliation(s)
- Qian Qin
- College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Xiaolong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xun Wang
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Lina Zhou
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Huihui Wan
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Qingxin Yin
- Instrumental Analysis Center, Dalian University of Technology, Dalian, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Düzel A, Bora B, Özgen GÖ, Evran S. Selection of DNA aptamers for the aptamer-assisted magnetic capture of the purified xylanase from Aspergillus niger. Int J Biol Macromol 2024; 257:128540. [PMID: 38061523 DOI: 10.1016/j.ijbiomac.2023.128540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low μM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.
Collapse
Affiliation(s)
- Ahmet Düzel
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, 57000 Sinop, Türkiye.
| | - Burhan Bora
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| | - Gaye Öngen Özgen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| |
Collapse
|
3
|
Arciszewska K, Kowalska E, Bartnicki F, Bonarek P, Banaś AK, Strzałka W. DNA aptamer-based affinity chromatography system for purification of recombinant proteins tagged with lysine tag. J Chromatogr A 2023; 1692:463846. [PMID: 36780846 DOI: 10.1016/j.chroma.2023.463846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Affinity chromatography (AC) is one of the techniques widely used for the purification of recombinant proteins. In our previous study, we presented a successful application of the Argi system [1] for the purification of recombinant proteins, based on the specific interaction between an arginine tag and a DNA aptamer. Exploring the possible application of positively charged peptide tags in the purification of recombinant proteins, in this study we developed and characterized an AC system based on the specific and reversible interaction between a DNA aptamer and a lysine tag (Lys-tag) comprising five lysine residues (5 K). We optimized the length of both the selected DNA aptamer and Lys-tag which were named B5K aptamer and 5K-tag, respectively. The results showed that the stability of the B5K aptamer and 5K-tag was dependent on the presence of potassium ions. The conditions for mild elution of 5K-tagged protein from B5K aptamer were determined. Our study proved that the developed system can be used for the purification of recombinant proteins from Escherichia coli total protein extracts.
Collapse
Affiliation(s)
- Klaudia Arciszewska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Filip Bartnicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
4
|
Kumar P, Sharma N, Ahmed MA, Verma AK, Umaraw P, Mehta N, Abubakar AA, Hayat MN, Kaka U, Lee SJ, Sazili AQ. Technological interventions in improving the functionality of proteins during processing of meat analogs. Front Nutr 2022; 9:1044024. [PMID: 36601080 PMCID: PMC9807037 DOI: 10.3389/fnut.2022.1044024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring). '.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Akhilesh K. Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Ahmed Abubakar Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Seri Kembangan, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
5
|
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 3:223-245. [PMID: 38013802 PMCID: PMC9550155 DOI: 10.1007/s43393-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/27/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules that have high affinity and selectivity to bind to specific targets. Compared to antibodies, aptamers are easy to in vitro synthesize with low cost, and exhibit excellent thermal stability and programmability. With these features, aptamers have been widely used in biology and medicine-related fields. In the meantime, a variety of systematic evolution of ligands by exponential enrichment (SELEX) technologies have been developed to screen aptamers for various targets. According to the characteristics of targets, customizing appropriate SELEX technology and post-SELEX optimization helps to obtain ideal aptamers with high affinity and specificity. In this review, we first summarize the latest research on the systematic bio-fabrication of aptamers, including various SELEX technologies, post-SELEX optimization, and aptamer modification technology. These procedures not only help to gain the aptamer sequences but also provide insights into the relationship between structure and function of the aptamers. The latter provides a new perspective for the systems bio-fabrication of aptamers. Furthermore, on this basis, we review the applications of aptamers, particularly in the fields of engineering biology, including industrial biotechnology, medical and health engineering, and environmental and food safety monitoring. And the encountered challenges and prospects are discussed, providing an outlook for the future development of aptamers.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
6
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
7
|
Wu S, Chen M, Liao X, Huang R, Wang J, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H 2 O 2 -injured PC12 cells. J Food Biochem 2021; 46:e13879. [PMID: 34309037 DOI: 10.1111/jfbc.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Neurodegenerative diseases are considered to be among the diseases most threatening to human beings. Increasing evidence shows that antioxidant hydrolysates/peptides with neuroprotective effects may relieve neurodegenerative diseases. However, related research in mushrooms, one of the richest sources of antioxidant hydrolysates/peptides, is in its infancy. Therefore, the in vitro neuroprotective effects of protein hydrolysates from Pleurotus geesteranus were researched in this study. Proteins were extracted from P. geesteranus and then hydrolyzed by simulated gastrointestinal digestion. The neuroprotective effects of the protein hydrolysates were evaluated by H2 O2 -injured PC12 cells. The hydrolysates showed a superior antioxidative ability and had a higher abundance of hydrophobic amino acids (e.g., leucine, alanine, and phenylalanine). Neither cytotoxicity nor the increase of ROS in PC12 cells was observed under treatment with the hydrolysates. However, pre-treatment with the hydrolysates in PC12 cells, which were then injured by H2 O2 , markedly attenuated ROS generation and enhanced the activities and mRNA expression of the endogenous antioxidant enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)), leading to a 26.68% increase in cell viability. The hydrolysates exhibited strong neuroprotective activity in H2 O2 -injured PC12 cells, possibly by reducing ROS generation and enhancing the activity of the antioxidant enzymatic system. PRACTICAL APPLICATIONS: Antioxidant hydrolysates with neuroprotection were obtained from Pleurotus geesteranus proteins by simulating gastrointestinal digestion, which exhibited an excellent pre-protective effect in oxidatively damaged PC12 cells. Further study showed that hydrolysates pre-protection may exert antioxidant activities not only as an exogenous antioxidant to scavenge ROS but also as a gene regulator to modulate the endogenous antioxidant enzymes gene expression. These results indicated that the potential of antioxidant peptides, derived from P. geesteranus through gastrointestinal digestion, could serve as a source of bioactive molecules in the prevention, relief or even treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Wu S, Zhao M, Gao S, Xu Y, Zhao X, Liu M, Liu X. Change Regularity of Taste and the Performance of Endogenous Proteases in Shrimp ( Penaens vannamei) Head during Autolysis. Foods 2021; 10:foods10051020. [PMID: 34066655 PMCID: PMC8151679 DOI: 10.3390/foods10051020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the food safety and proximate composition of shrimp head (SH). Potentially toxic elements in SH were below European Union legislation limits. SH had a high content of tasting amino acids (sweet and umami amino acids was 57%) and a high content of functional amino acids (essential amino acids was 37%). Moreover, the changes of flavor and key umami molecules in SH were studied by sensory evaluation, electronic tongue, electronic nose, automated amino acid analyzer, and high performance liquid chromatography (HPLC). The results showed that the significant difference of flavor in SH happened during autolysis. SH with autolysis had the best umami taste at 6 h, which may result from the synergistic work of free amino acids and nucleotide related compounds. Additionally, the performance of endogenous proteases in SH was investigated to efficiently analyze autolysis. The optimum pH and temperature of endogenous proteases in SH were 7.5 and 50 °C, respectively. The autolysis of SH depends on two endogenous proteases (~50 kDa and ~75 kDa). These results suggest that the formation of flavor in SH during autolysis can be controlled, which could provide guidance for SH recycle. SH could consider as one of the food materials for producing condiments.
Collapse
Affiliation(s)
- Shujian Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Department of Food Science and Technology, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shijue Gao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Department of Food Science and Technology, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Yue Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoying Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mingyuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Cardle II, Cheng EL, Jensen MC, Pun SH. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development. Acc Chem Res 2020; 53:1724-1738. [PMID: 32786336 DOI: 10.1021/acs.accounts.0c00335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed the cancer treatment landscape, utilizing ex vivo modified autologous T cells to treat relapsed or refractory B-cell leukemias and lymphomas. However, the therapy's broader impact has been limited, in part, by a complicated, lengthy, and expensive production process. Accordingly, as CAR T-cell therapies are further advanced to treat other cancers, continual innovation in cell manufacturing will be critical to their successful clinical implementation. In this Account, we describe our research efforts using biomaterials to improve the three fundamental steps in CAR T-cell manufacturing: (1) isolation, (2) activation, and (3) genetic modification.Recognizing that clinical T-cell isolation reagents have high cost and supply constraints, we developed a synthetic DNA aptamer and complementary reversal agent technology that isolates label-free CD8+ T cells with high purity and yield from peripheral blood mononuclear cells. Encouragingly, CAR T cells manufactured from both antibody- and aptamer-isolated T cells were comparable in therapeutic potency. Discovery and design of other T-cell specific aptamers and corresponding reversal reagents could fully realize the potential of this approach, enabling inexpensive isolation of multiple distinct T-cell populations in a single isolation step.Current ex vivo T-cell activation materials do not accurately mimic in situ T-cell activation by antigen presenting cells (APCs). They cause unequal CD4+ and CD8+ T-cell expansion, necessitating separate production of CD4+ and CD8+ CAR T cells for therapies that call for balanced infusion compositions. To address these shortcomings, we designed a panel of biodegradable cell-templated silica microparticles with supported lipid bilayers that display stimulatory ligands for T-cell activation. High membrane fluidity, elongated shape, and rough surface topography, all properties of endogenous APCs, were found to be favorable parameters for activation, promoting unbiased and efficient CD4/CD8 T-cell expansion while not terminally differentiating the cells.Viral and electroporation-based gene delivery systems have various drawbacks. Viral vectors are expensive and have limited cargo sizes, whereas electroporation is highly cytotoxic. Thus, low-cost nonviral platforms that transfect T cells with low cytotoxicity and high efficiency are needed for CAR gene delivery. Our group thus synthesized a panel of cationic polymers with different architectures and evaluated their T-cell transfection ability. We identified a comb-shaped polymer formulation that transfected primary T cells with low cytotoxicity, although transfection efficiency was low compared to conventional methods. Analysis of intracellular and extracellular barriers to transfection revealed low uptake of polyplexes and high endosomal pH in T cells, alluding to biological and polymer properties that could be further improved.These innovations represent just a few recent developments in the biomaterials field for addressing CAR T-cell production needs. Together, these technologies and their future advancement will pave the way for economical and straightforward CAR T-cell manufacturing.
Collapse
Affiliation(s)
- Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
| | - Emmeline L. Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C. Jensen
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
- Department of Pediatrics and Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
11
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
12
|
Tan J, Wang F, Wang Z, Lu Q, Deng L. An enzyme-free fluorometric nanoprobe for chloramphenicol based on signal amplification using graphene oxide sheets. Mikrochim Acta 2020; 187:319. [PMID: 32394282 DOI: 10.1007/s00604-020-04309-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
A sensitive and selective method for the determination of the antibiotic chloramphenicol (CAP) is described, which is based on double signal amplification and GO as an efficient fluorescence quencher. The nucleic acid probe is composed of three well-defined regions, viz. the signal probe I, the signal probe II, and the capture probe. The capture probe will bind to CAP specifically and the signal probes produce a significant fluorescence signal. One end of the signal probes is labeled with the fluorophore 6-carboxyfluorescein (FAM). The labeled probes can be adsorbed on graphene oxide (GO) via π-stacking interactions, upon which the green fluorescence of FAM (measured at excitation/emission wavelengths of 490/514 nm) is quenched. On addition of CAP, the aptamer/CAP complexes are formed, and this leads to the restoration of fluorescence due to the removal of the probes from GO. The double signal probes, together with GO as quencher, improve the fluorescence signal significantly and lower the detection limit. Under optimized conditions, the assay works in the 20- to 200-ppb CAP concentration range and has a 0.3-ppb detection limit. It is also successfully applied to the determination of CAP in spiked swine urine samples. The recoveries from spiked swine urine samples are between 97.73 and 108.56%, and the repeatability (expressed as the RSD) is between 4.66 and 8.90%. Graphical abstract The constructed DNA probes form a stable structure and bind to chloramphenicol specifically. One end of signal probes was labeled with the fluorophore 6-carboxyfluorescein (FAM). The detection sensitivity of chloramphenicol was significantly enhanced by using double signal amplification, which was superior to the traditional methods. The quantities of CAP can be achieved by fluorescence increment.
Collapse
Affiliation(s)
- Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Changsha Customs Technology Center, Xiangfu middle Road 188, Changsha, 410004, Hunan, People's Republic of China
| | - Feiying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qiujun Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Zhong XL, Tian YZ, Jia ML, Liu YD, Cheng D, Li G. Characterization and purification via nucleic acid aptamers of a novel esterase from the metagenome of paper mill wastewater sediments. Int J Biol Macromol 2020; 153:441-450. [PMID: 32119944 DOI: 10.1016/j.ijbiomac.2020.02.319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
A new esterase gene est906 was identified from paper mill wastewater sediments via a function-based metagenomic approach. The gene encoded a protein of 331 amino acids, that shared 86% homology with known esterases. Based on the results of multiple sequence alignment and phylogenetic analysis, it was confirmed that Est906 contained a characteristic hexapeptide motif (G-F-S-M-G-G), which classified it as a lipolytic enzyme family V protein. Est906 displayed the highest hydrolysis activity to ρ-nitrophenyl caproate (C6), and its optimal temperature and pH were 54 °C and 9.5, respectively. Additionally, this enzyme had good stability under strong alkaline conditions (pH 10.0-11.0) in addition to moderate heat resistance and good tolerance against several metal ions and organic solvents. Furthermore, a specific nucleic acid aptamer (Apt1) bound to Est906 was obtained after five rounds of magnetic bead SELEX screening. Apt1 displayed high specific recognition and capture ability to Est906. In conclusion, this study not only identified a new esterase of family V with potential industrial application by metagenomic technology but also provided a new method to purify recombinant esterases via nucleic acid aptamers, which will facilitate the isolation and purification of target proteins in the future.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yong-Zhen Tian
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mei-Lu Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yi-De Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Du Cheng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Gang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
14
|
Beloborodov SS, Krylova SM, Krylov SN. Spherical-Shape Assumption for Protein-Aptamer Complexes Facilitates Prediction of Their Electrophoretic Mobility. Anal Chem 2019; 91:12680-12687. [PMID: 31525943 DOI: 10.1021/acs.analchem.9b02019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA aptamers are single-strand DNA (ssDNA) capable of selectively and tightly binding a target molecule. Capillary electrophoresis-based selection of aptamers for protein targets requires the knowledge of electrophoretic mobilities of protein-aptamer complexes, while measuring these mobilities requires having the aptamers. Here, we report on breaking this vicious circle. We introduce a mathematical model that allows prediction of protein-aptamer complex mobility, while requiring only three easy-to-determine input parameters: the number N of nucleotides in the aptamer, electrophoretic mobility of N-nucleotide-long ssDNA, and a sum molecular weight of the protein-aptamer complex. The model was derived upon simplifying assumptions of a spherical shape of the protein-aptamer complex. According to this model, the protein-aptamer complex mobility is a linear function of a combination of the three input parameters with empirically determined line's intercept and slope. The intercept and slope were determined using experimental data for seven complexes. The model was then cross-validated with the leave-one-out approach revealing only 2% residual standard deviations for both the slope and the intercept. Such a precise determination of these constants allowed accurate mobility prediction for the excluded complexes with only a 3% maximum deviation from the experimentally determined mobilities. The model was tested by applying it to three protein-aptamer complexes that were not a part of the training/cross-validation set; deviations of the predicted mobilities from the experimentally determined ones were within 5% of the latter. To complete this study, the model was fine-tuned using the 10 complexes. Our results strongly suggest the validity of the spherical-shape assumption for the protein-aptamer complexes when considering complex mobility. The developed model will make it possible to rationally design capillary electrophoresis-based selection of DNA aptamers for protein targets.
Collapse
Affiliation(s)
- Stanislav S Beloborodov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| |
Collapse
|
15
|
Le ATH, Krylova SM, Krylov SN. Determination of the Equilibrium Constant and Rate Constant of Protein-Oligonucleotide Complex Dissociation under the Conditions of Ideal-Filter Capillary Electrophoresis. Anal Chem 2019; 91:8532-8539. [PMID: 31136154 DOI: 10.1021/acs.analchem.9b01801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ideal-filter capillary electrophoresis (IFCE) allows selection of protein binders from oligonucleotide libraries in a single step of partitioning in which protein-bound and unbound oligonucleotides move in the opposite directions. In IFCE, the unbound oligonucleotide does not reach the detector, imposing a problem for finding the equilibrium constant ( Kd) and rate constant ( koff) of protein-oligonucleotide complex dissociation. We report a double-passage approach that allows finding Kd and koff under the IFCE conditions, i.e. near-physiological pH and ionic strength. First, a plug of the protein-oligonucleotide equilibrium mixture passes to the detector in a pressure-driven flow, allowing for both the complex and free oligonucleotide to be detected as a single first peak. Second, the pressure is turned off and the voltage is applied to reverse the migration of only the complex which is detected as the second peak. The experiment is repeated with a lower voltage consequently resulting in longer travel time of the complex to the detector, greater extent of complex dissociation, and the decreased area of the second peak. Finally, the peak areas are used to calculate the values of Kd and koff. Here we explain theoretical and practical aspects of the double-passage approach, prove its validity quantitatively, and, demonstrate its application to determine Kd and koff for an affinity complex between a protein and its DNA aptamer. The double-passage approach for finding Kd and koff of protein-oligonucleotide complexes under the IFCE conditions is a perfect complement for IFCE-based selection of protein binders from oligonucleotide libraries.
Collapse
Affiliation(s)
- An T H Le
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions , York University , Toronto , Ontario M3J 1P3 , Canada
| |
Collapse
|
16
|
Le ATH, Krylova SM, Krylov SN. Ideal-filter capillary electrophoresis: A highly efficient partitioning method for selection of protein binders from oligonucleotide libraries. Electrophoresis 2019; 40:2553-2564. [PMID: 31069842 DOI: 10.1002/elps.201900028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Selection of affinity ligands for protein targets from oligonucleotide libraries currently involves multiple rounds of alternating steps of partitioning of protein-bound oligonucleotides (binders) from protein-unbound oligonucleotides (nonbinders). We have recently introduced ideal-filter capillary electrophoresis (IFCE) for binder selection in a single step of partitioning. In IFCE, protein-binder complexes and nonbinders move inside the capillary in the opposite directions, and the efficiency of their partitioning reaches 109 , i.e., only one of a billion molecules of nonbinders leaks through IFCE while all binders pass through. The condition of IFCE can be satisfied when the magnitude of the mobility of EOF is smaller than that of the protein-binder complexes and larger than that of nonbinders. The efficiency of partitioning in IFCE is 10 million times higher than those of solid-phase-based methods of partitioning typically used in selection of affinity ligands for protein targets from oligonucleotide libraries. Here, we provide additional details on our justification for IFCE development. We elaborate on electrophoretic aspects of the method and define the theoretical range of EOF mobilities that support IFCE. Based on these theoretical results, we identify an experimental range of background electrolyte's ionic strength that supports IFCE. We also extend our interpretation of the results and discuss in-depth IFCE's prospective in practical applications and fundamental studies.
Collapse
Affiliation(s)
- An T H Le
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Svetlana M Krylova
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Gu L, Yan W, Liu S, Ren W, Lyu M, Wang S. Trypsin enhances aptamer screening: A novel method for targeting proteins. Anal Biochem 2018; 561-562:89-95. [PMID: 30196049 DOI: 10.1016/j.ab.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
A novel screening method for protein aptamer selection was developed in this study. Aptamers with high affinity and specificity to the surface recombinant antigen of Helicobacter pylori (HP-Ag) and to tumor markers carcinoembryonic antigen (CEA), cancer antigen 125 (CA125) and cancer antigen 19-9(CA19-9) were screened using trypsin enhanced screening method. Briefly, the target proteins above were immobilized onto 96-well polystyrene plates and incubated with a single-stranded DNA (ssDNA) library for aptamer selection. Then, trypsin was introduced to digest the proteins and obtain ssDNA that bound to the target proteins with high specificity. The concentration of ssDNA that shed from protein-ssDNA complexes was detected. After sequencing, the enrichment of target-specific aptamers was monitored and the affinity of each aptamer was analyzed. Urea, which has been reported in other article, was used to compare with trypsin. The results revealed that trypsin was more effective than urea for protein aptamer selection. The protocol used in this study provided a novel method for generating aptamers.
Collapse
Affiliation(s)
- Lide Gu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, PR China; College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China
| | - Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, PR China; College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China.
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, PR China; College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China
| | - Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu, 210000, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, PR China; College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China.
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Jiangsu Marine Resources Development Research Institute, Lianyungang, 222005, PR China; College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, 222005, PR China.
| |
Collapse
|