1
|
Endo M, Gotoh M, Nakashima M, Kawamoto Y, Sakai S, Murakami-Murofushi K, Hashimoto K, Miyamoto Y. 2-Carba cyclic phosphatidic acid regulates blood coagulation and fibrinolysis system for repair after brain injury. Brain Res 2023; 1818:148511. [PMID: 37506965 DOI: 10.1016/j.brainres.2023.148511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Effective blood coagulation prevents inflammation and neuronal loss after brain injury. 2-Carba-cyclic phosphatidic acid (2ccPA), a biotherapeutic for brain injury, inhibits blood extravasation resulting from blood-brain barrier breakdown. However, the hemostasis mechanism of 2ccPA remains unclear. We determined the effects of 2ccPA-injection on blood coagulation and fibrinolysis using a needle-induced brain injury model. 2ccPA suppressed the expression of platelet degranulation-related genes. Immediately after brain injury, 2ccPA increased CD41+ platelet aggregation around the lesions and promoted fibrin aggregation. Additionally, 2ccPA supported fibrinolysis by upregulating plasminogen activator expression. These results suggest the acute effects of 2ccPA on brain hemostasis.
Collapse
Affiliation(s)
- Misaki Endo
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Mari Gotoh
- Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Mari Nakashima
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Yuka Kawamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Shiho Sakai
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | | | - Kei Hashimoto
- Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Academic Production, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan.
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Takei R, Nakashima M, Gotoh M, Endo M, Hashimoto K, Miyamoto Y, Murakami-Murofushi K. 2-carba-cyclic phosphatidic acid modulates astrocyte-to-microglia communication and influences microglial polarization towards an anti-inflammatory phenotype. Neurosci Lett 2023; 797:137063. [PMID: 36634888 DOI: 10.1016/j.neulet.2023.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
2-carba-cyclic phosphatidic acid (2ccPA) suppresses microglial and astrocyte inflammation for neuronal survival following traumatic brain injury. However, it remains unknown how 2ccPA regulates microglial activation. In this study, to elucidate the 2ccPA behavior in glial communication, we collected the astrocyte conditioned media (ACM) from primary astrocyte cultures that were treated by lipopolysaccharide (LPS) and 2ccPA and analyzed the alteration of microglial inflammation caused by the ACM treatment. The addition of the ACM derived from LPS- and 2ccPA-double treated astrocytes to microglia decreased the CD86+ pro-inflammatory M1 microglia, which were upregulated with the ACM collected from astrocytes treated by LPS without 2ccPA, while the direct addition of LPS and 2ccPA to microglia failed to decrease the CD86+ microglia to the basal level. We confirmed that the ACM from LPS- and 2ccPA-treated astrocytes increased the ratio of CD206+ anti-inflammatory M2 microglia to total microglia, whereas direct treatment of microglia with LPS and 2ccPA had no effect on the CD206+ microglia ratio, demonstrating the importance of astrocyte intervention in microglial polarization. In addition, we examined whether astrocytes modulate the 2ccPA-regulated proinflammatory cytokine production derived from microglia. The addition of the ACM from LPS- and 2ccPA-treated astrocytes to microglia remarkably canceled the LPS-induced upregulation of IL-1β, IL-6, and TNF-α secreted from microglia, while the direct addition of LPS and 2ccPA to microglia showed no affect. Therefore, our results indicate that astrocytes mediate the 2ccPA function to shift microglia towards the M2 phenotype by interfering with the polarization of M1 microglia and to suppress cytokine production.
Collapse
Affiliation(s)
- Rino Takei
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Mari Nakashima
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Mari Gotoh
- Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Department of Clinical Laboratory Medicine, Faculty of Medical Technology, Teikyo University, Kage, Itabashi-ku, Tokyo, Japan
| | - Misaki Endo
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Kei Hashimoto
- Academic Production, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Yasunori Miyamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Institute for Human Life Science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan; Research division of human welfare science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan.
| | - Kimiko Murakami-Murofushi
- Research division of human welfare science, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Gotoh M, Miyamoto Y, Ikeshima-Kataoka H. Astrocytic Neuroimmunological Roles Interacting with Microglial Cells in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24021599. [PMID: 36675113 PMCID: PMC9865248 DOI: 10.3390/ijms24021599] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Both astrocytic and microglial functions have been extensively investigated in healthy subjects and neurodegenerative diseases. For astrocytes, not only various sub-types were identified but phagocytic activity was also clarified recently and is making dramatic progress. In this review paper, we mostly focus on the functional role of astrocytes in the extracellular matrix and on interactions between reactive astrocytes and reactive microglia in normal states and in neurodegenerative diseases, because the authors feel it is necessary to elucidate the mechanisms among activated glial cells in the pathology of neurological diseases in order to pave the way for drug discovery. Finally, we will review cyclic phosphatidic acid (cPA), a naturally occurring phospholipid mediator that induces a variety of biological activities in the brain both in vivo and in vitro. We propose that cPA may serve as a novel therapeutic molecule for the treatment of brain injury and neuroinflammation.
Collapse
Affiliation(s)
- Mari Gotoh
- Department of Clinical Laboratory Medicine, Faculty of Medical Technology, Teikyo University, 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yasunori Miyamoto
- Institute for Human Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| |
Collapse
|
4
|
Ortuno VE, Pulletikurti S, Veena KS, Krishnamurthy R. Synthesis and hydrolytic stability of cyclic phosphatidic acids: implications for synthetic- and proto-cell studies. Chem Commun (Camb) 2022; 58:6231-6234. [PMID: 35510658 DOI: 10.1039/d2cc00292b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic phosphatidic acids (cPAs) are bioactive compounds with therapuetic potential, but are in short supply. We describe a robust synthesis of cPAs employing an efficient cyclophosphorylation procedure and report on their hydrolytic properties - which should facilitate the study of their biological properties and as plausible proto- and synthetic-cell components.
Collapse
Affiliation(s)
- Veronica Egas Ortuno
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Sunil Pulletikurti
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Kollery S Veena
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
5
|
Molecular mechanisms of cyclic phosphatidic acid-induced lymphangiogenic actions in vitro. Microvasc Res 2021; 139:104273. [PMID: 34699844 DOI: 10.1016/j.mvr.2021.104273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
The lymphatic system plays important roles in various physiological and pathological phenomena. As a bioactive phospholipid, lysophosphatidic acid (LPA) has been reported to function as a lymphangiogenic factor as well as some growth factors, yet the involvement of phospholipids including LPA and its derivatives in lymphangiogenesis is not fully understood. In the present study, we have developed an in-vitro lymphangiogenesis model (termed a collagen sandwich model) by utilizing type-I collagen, which exists around the lymphatic endothelial cells of lymphatic capillaries in vivo. The collagen sandwich model has revealed that cyclic phosphatidic acid (cPA), and not LPA, augmented the tube formation of human dermal lymphatic endothelial cells (HDLECs). Both cPA and LPA increased the migration of HDLECs cultured on the collagen. As the gene expression of LPA receptor 6 (LPA6) was predominantly expressed in HDLECs, a siRNA experiment against LPA6 attenuated the cPA-mediated tube formation. A synthetic LPA1/3 inhibitor, Ki16425, suppressed the cPA-augmented tube formation and migration of the HDLECs, and the LPA-induced migration. The activity of Rho-associated protein kinase (ROCK) located at the downstream of the LPA receptors was augmented in both the cPA- and LPA-treated cells. A potent ROCK inhibitor, Y-27632, suppressed the cPA-dependent tube formation but not the migration of the HDLECs. Furthermore, cPA, but not LPA, augmented the gene expression of VE-cadherin and β-catenin in the HDLECs. These results provide novel evidence that cPA facilitates the capillary-like morphogenesis and the migration of HDLECs through LPA6/ROCK and LPA1/3 signaling pathways in concomitance with the augmentation of VE-cadherin and β-catenin expression. Thus, cPA is likely to be a potent lymphangiogenic factor for the initial lymphatics adjacent to type I collagen under physiological conditions.
Collapse
|
6
|
2-Carba-lysophosphatidic acid is a novel β-lysophosphatidic acid analogue with high potential for lysophosphatidic acid receptor activation and autotaxin inhibition. Sci Rep 2021; 11:17360. [PMID: 34462512 PMCID: PMC8405639 DOI: 10.1038/s41598-021-96931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that, along with its chemically stabilized analogue 2-carba-cyclic phosphatidic acid (2ccPA), induces various biological activities in vitro and in vivo. Although cPA is similar to lysophosphatidic acid (LPA) in structure and synthetic pathway, some of cPA biological functions apparently differ from those reported for LPA. We previously investigated the pharmacokinetic profile of 2ccPA, which was found to be rapidly degraded, especially in acidic conditions, yielding an unidentified compound. Thus, not only cPA but also its degradation compound may contribute to the biological activity of cPA, at least for 2ccPA. In this study, we determined the structure and examined the biological activities of 2-carba-lysophosphatidic acid (2carbaLPA) as a 2ccPA degradation compound, which is a type of β-LPA analogue. Similar to LPA and cPA, 2carbaLPA induced the phosphorylation of the extracellular signal-regulated kinase and showed potent agonism for all known LPA receptors (LPA1–6) in the transforming growth factor-α (TGFα) shedding assay, in particular for LPA3 and LPA4. 2carbaLPA inhibited the lysophospholipase D activity of autotaxin (ATX) in vitro similar to other cPA analogues, such as 2ccPA, 3-carba-cPA, and 3-carba-LPA (α-LPA analogue). Our study shows that 2carbaLPA is a novel β-LPA analogue with high potential for the activation of some LPA receptors and ATX inhibition.
Collapse
|
7
|
Shimizu Y, Fukasawa K, Yamamoto S, Shibaike Y, Tsukahara R, Ishikawa M, Iwasa K, Yoshikawa K, Gotoh M, Murakami-Murofushi K. Evaluation of the pharmacokinetics of 2-carba-cyclic phosphatidic acid by liquid chromatography-triple quadrupole mass spectrometry. Prostaglandins Other Lipid Mediat 2020; 150:106450. [PMID: 32298781 DOI: 10.1016/j.prostaglandins.2020.106450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023]
Abstract
Cyclic phosphatidic acid (cPA) is a lysophospholipid mediator that suppresses cancer metastasis and osteoarthritis. It also has neuroprotective roles in diseases such as multiple sclerosis and delayed neuronal death following transient ischemia. In order to take advantage of the properties of cPA for the development of new therapeutic strategies, we have synthesized several cPA derivatives and discovered 2-carba-cPA (2ccPA) as a promising candidate. To develop 2ccPA as a therapeutic agent, we investigated the pharmacokinetic profile of 2ccPA by liquid chromatography-triple quadrupole mass spectrometry in this study. When 2ccPA was administered intraperitoneally to mice at a dose of 1.6 mg/kg, the half-life of 2ccPA in plasma was 16 min. The 2ccPA, dosed intraperitoneally to mice at 16 mg/kg, distributed to each organ including brain at 20 min after dosing. It was found that 2ccPA was stable in neutral or alkaline conditions (e.g., intestine) but unstable in acidic conditions (e.g., stomach). When 2ccPA was orally administrated to rats as a gastro-resistant form using an enterosoluble capsule, plasma 2ccPA levels peaked at 2 h, slowly declined thereafter and persistently detected even at 10 h after administration. Here, we present the findings on the effect of the continuous release of 2ccPA from the capsule to reduce the lysophospholipase D activity and also decrease plasma levels of lysophosphatidic acid in rat. These findings will be useful in further studies for evaluating the application of 2ccPA in several disorders.
Collapse
Affiliation(s)
| | - Keiko Fukasawa
- Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
| | - Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yuki Shibaike
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan; Research Organization for the Promotion of Global Women's Leadership, Ochanomizu University, Tokyo, Japan
| | - Ryoko Tsukahara
- Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
| | - Masaki Ishikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Mari Gotoh
- Ochadai Academic Production, Ochanomizu University, Tokyo, Japan; Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan.
| | | |
Collapse
|
8
|
Shibaike Y, Gotoh M, Ogawa C, Nakajima S, Yoshikawa K, Kobayashi T, Murakami-Murofushi K. 2-Carba cyclic phosphatidic acid inhibits lipopolysaccharide-induced prostaglandin E2 production in a human macrophage cell line. Biochem Biophys Rep 2019; 19:100668. [PMID: 31367683 PMCID: PMC6651843 DOI: 10.1016/j.bbrep.2019.100668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that contains a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. Using mouse models for multiple sclerosis (cuprizone-induced demyelination and experimental autoimmune encephalomyelitis) and traumatic brain injury, we revealed that cPA and its metabolically stabilized cPA derivative, 2-carba-cPA (2ccPA), have potential to protect against neuroinflammation. In this study, we investigated whether 2ccPA has anti-inflammatory effect on peripheral immune function or not using inflammation-induced macrophages-like cell line, THP-1 monocytes differentiated by phorbol 12-myristate 13-acetate (PMA). Lipopolysaccharide (LPS)-stimulated THP-1 cells were found to have higher expression of the mRNAs of several inflammation-related cytokines and of the enzyme cyclooxygenase-2 (Cox-2); however, when THP-1 cells were stimulated by LPS in the presence of 2ccPA, the increase in the expression of pro-inflammatory cytokine and Cox-2 mRNA was attenuated. 2ccPA treatment also decreased the amount of prostaglandin E2 (PGE2) produced by LPS-stimulated THP-1 cells and decreased expression of the mRNA of prostaglandin E receptor 2 (EP2, PTGER2), a PGE2 receptor that mediates inflammation. These results indicate that 2ccPA has anti-inflammatory properties. 2-Carba cyclic phosphatidic acid inhibits prostaglandin E2 production. 2-Carba cyclic phosphatidic acid has anti-inflammatory effect. 2-Carba cyclic phosphatidic acid has effect on peripheral immune function.
Collapse
Affiliation(s)
- Yuki Shibaike
- Endowed Research Division of Beauty and Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,Research Organization for the Promotion of Global Women's Leadership, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Mari Gotoh
- Endowed Research Division of Beauty and Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Chinatsu Ogawa
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Shingo Nakajima
- Endowed Research Division of Beauty and Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1, Ogawa-Higashi, Kodaira, Tokyo, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Tetsuyuki Kobayashi
- Institute for Human Life Innovation, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Kimiko Murakami-Murofushi
- Endowed Research Division of Beauty and Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
9
|
Christmann U, Hite RD, Witonsky SG, Buechner-Maxwell VA, Wood PL. Evaluation of lipid markers in surfactant obtained from asthmatic horses exposed to hay. Am J Vet Res 2019; 80:300-305. [PMID: 30801214 DOI: 10.2460/ajvr.80.3.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the lipidomic profile of surfactant obtained from horses with asthma at various clinical stages and to compare results with findings for healthy horses exposed to the same conditions. SAMPLE Surfactant samples obtained from 6 horses with severe asthma and 7 healthy horses. PROCEDURES Clinical evaluation of horses and surfactant analysis were performed. Samples obtained from horses with severe asthma and healthy horses before (baseline), during, and after exposure to hay were analyzed. Crude surfactant pellets were dried prior to dissolution in a solution of isopropanol:methanol:chloroform (4:2:1) containing 7.5mM ammonium acetate. Shotgun lipidomics were performed by use of high-resolution data acquisition on an ion-trap mass spectrometer. Findings were analyzed by use of an ANOVA with a Tukey-Kramer post hoc test. RESULTS Results of lipidomic analysis were evaluated to detect significant differences between groups of horses and among exposure statuses within groups of horses. Significantly increased amounts of cyclic phosphatidic acid (cPA) and diacylglycerol (DAG) were detected in surfactant from severely asthmatic horses during exposure to hay, compared with baseline and postexposure concentrations. Concentrations of cPA and DAG did not change significantly in healthy horses regardless of exposure status. CONCLUSIONS AND CLINICAL RELEVANCE cPA 16:0 and DAG 36:2 were 2 novel lipid mediators identified in surfactant obtained from asthmatic horses with clinical disease. These molecules were likely biomarkers of sustained inflammation. Further studies are needed to evaluate a possible correlation with disease severity and potential alterations in the plasma lipidomic profile of horses with asthma.
Collapse
|
10
|
Qualitative and quantitative comparison of cyclic phosphatidic acid and its related lipid species in rat serum using hydrophilic interaction liquid chromatography with tandem-mass spectrometry. J Chromatogr A 2018; 1567:177-184. [DOI: 10.1016/j.chroma.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022]
|