1
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2024; 43:936-976. [PMID: 37056215 DOI: 10.1002/mas.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
2
|
Shields SWJ, Canez CR, Rosales CA, Roberts JA, Bourgaize H, Pallister PJ, Manthorpe JM, Smith JC. Optimized 13C-TrEnDi Enhances the Sensitivity of Plasmenyl Ether Glycerophospholipids and Demonstrates Compatibility with Other Derivatization Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:972-981. [PMID: 38551491 DOI: 10.1021/jasms.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The identification and quantitation of plasmalogen glycerophospholipids is challenging due to their isobaric overlap with plasmanyl ether-linked glycerophospholipids, susceptibility to acid degradation, and their typically low abundance in biological samples. Trimethylation enhancement using diazomethane (TrEnDi) can be used to significantly enhance the signal of glycerophospholipids through the creation of quaternary ammonium groups producing fixed positive charges using 13C-diazomethane in complex lipid extracts. Although TrEnDi requires a strong acid for complete methylation, we report an optimized protocol using 10 mM HBF4 with the subsequent addition of a buffer solution that prevents acidic hydrolysis of plasmalogen species and enables the benefits of TrEnDi to be realized for this class of lipids. These optimized conditions were applied to aliquots of bovine liver extract (BLE) to achieve permethylation of plasmalogen lipids within a complex mixture. Treating aliquots of unmodified and TrEnDi-derivatized BLE samples with 80% formic acid and comparing their liquid chromatography mass spectrometry (LCMS) results to analogous samples not treated with formic acid, enabled the identification of 29 plasmalogen species. On average, methylated plasmalogen species from BLE demonstrated 2.81-fold and 28.1-fold sensitivity gains over unmodified counterparts for phosphatidylcholine and phosphatidylethanolamine plasmalogen species, respectively. Furthermore, the compatibility of employing 13C-TrEnDi and a previously reported iodoacetalization strategy was demonstrated to effectively identify plasmenyl-ether lipids in complex biological extracts at greater levels of sensitivity. Overall, we detail an optimized 13C-TrEnDi derivatization strategy that enables the analysis of plasmalogen glycerophospholipids with no undesired cleavage of radyl groups, boosting their sensitivity in LCMS and LCMS/MS analyses.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos R Canez
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Hillary Bourgaize
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
3
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2023. [PMID: 37010157 DOI: 10.1002/mas.21843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analysed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimisation of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
4
|
Lv J, Ma J, Liu Y, Li P, Wang D, Geng Z, Xu W. Lipidomics analysis of Sanhuang chicken during cold storage reveals possible molecular mechanism of lipid changes. Food Chem 2023; 417:135914. [PMID: 36933423 DOI: 10.1016/j.foodchem.2023.135914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Lipidomic profiles changes of the Sanhuang chicken breast meat during cold storage (4 °C) were analyzed using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS)-based lipidomic analysis. Total lipids content decreased 16.8% after storage. Triacylglycerol (TAG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) significantly decreased, while lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) increased. Particularly, there was a trend that TAGs with fatty acids of 16:0 and 18:1, and phospholipids containing 18:1, 18:2 and 20:4 were more likely to be downregulated. The increase in the ratio of lysophospholipids/phospholipids and the degree of lipid oxidation demonstrated oxidation and enzymatic hydrolysis are potentially responsible for the lipid transformation. Moreover, 12 lipid species (P < 0.05, VIP > 1, FC < 0.8 or >1.25) were identified to be associated with the spoilage of meat. Glycerophospholipid metabolism and linoleic acid metabolism were the key metabolic pathways involved in the lipid transformations of chilled chicken.
Collapse
Affiliation(s)
- Jingxiu Lv
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China
| | - Jingjing Ma
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Pengpeng Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
| | - Daoying Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, PR China; Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, PR China.
| | - Zhiming Geng
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| | - Weimin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, PR China
| |
Collapse
|
5
|
Saito R, Bando T, Kotaniguchi M, Tamura T, Kuno T, Watanabe K, Mizukami Y, Kitamura S, Kadokawa H. Ethanolamine plasmalogens derived from whale brain stimulate both follicle-stimulating hormone and luteinizing hormone secretion by bovine gonadotrophs. Anim Sci J 2023; 94:e13839. [PMID: 37247943 DOI: 10.1111/asj.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Ethanolamine plasmalogens (EPls) are the only known ligands of a novel receptor, G protein-coupled receptor 61, and bovine brain EPls stimulate follicle-stimulating hormone (FSH) but not luteinizing hormone (LH), secreted by bovine gonadotrophs. We hypothesized that the brain EPls of whales (Balaenoptera edeni), another Cetartiodactyla with at least twice the lifespan of bovines, could stimulate FSH secretion by gonadotrophs. To test this hypothesis, bovine gonadotrophs (from approximately 2-year-old Japanese Black heifers) were cultured for 3.5 days and treated with increasing concentrations of brain EP1s from whales (approximately 22 years old). FSH and LH secretion was stimulated by all tested concentrations of whale EPls (p < 0.05). To clarify the important differences between bovine and whale EPls, we utilized two-dimensional liquid chromatography-mass spectrometry, which revealed 35 peaks. Among them, we observed significant differences between 12 EPl molecular species. Additionally, we identified differentially expressed genes for enzymes involved in EPl synthesis or degradation in the hypothalamus of young heifers and old cows (approximately 10 years old) as compared to whales (approximately 28 years old) via deep sequencing of the transcriptome. We conclude that whale brains contain unique EPls that stimulate both FSH and LH secretion by bovine gonadotrophs.
Collapse
Affiliation(s)
- Risa Saito
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | - Miyako Kotaniguchi
- International Polysaccharide Engineering Inc., Laboratory of Advanced Food Process Engineering, Organization for Research Promotion, Osaka Metropolitan University, Sakai, Japan
| | | | - Tomoe Kuno
- Institute of Cetacean Research, Tokyo, Japan
| | - Kenji Watanabe
- Center for Gene Research, Yamaguchi University, Ube, Japan
| | | | - Shinichi Kitamura
- Laboratory of Advanced Food Process Engineering, Organization for Research Promotion, Osaka Metropolitan University, Sakai, Japan
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
6
|
Ethanolamine plasmalogens derived from scallops stimulate both follicle-stimulating hormone and luteinizing hormone secretion by bovine gonadotrophs. Sci Rep 2022; 12:16789. [PMID: 36202862 PMCID: PMC9537335 DOI: 10.1038/s41598-022-20794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Brain ethanolamine plasmalogens (EPls) are the only known ligands of G-protein-coupled receptor 61, a novel receptor that stimulates follicle-stimulating hormone (FSH), but not luteinizing hormone (LH), secretion by bovine gonadotrophs. We hypothesized that the recently developed neuroprotective EPls extracted from scallop (Pecten yessoensis) (scallop EPls) could stimulate FSH secretion by gonadotrophs. To test this hypothesis, bovine gonadotrophs were cultured for 3.5 days and treated with increasing concentrations of scallop EPls. FSH secretion was stimulated by all tested concentrations of scallop EPls (P < 0.05). Surprisingly, LH secretion was stimulated by both 0.5 (P < 0.05) and 5 (P < 0.01) ng/mL of scallop EPls. To clarify the important differences between bovine brain and scallop EPls, we utilized two-dimensional liquid chromatography–mass spectrometry, which revealed 44 peaks, including 10 large peaks. Among them, eight were scallop-specific EPl molecular species, occupying approximately 58% of the total area percentage of scallop EPls. Almost all large peaks contained 4, 5, or 6 unsaturated double bonds in the carbon chain at the sn-2 position of the glycerol backbone. Our results showed that EPls from scallops, lacking pituitary glands, stimulated both FSH and LH secretion by bovine gonadotrophs.
Collapse
|
7
|
Song Y, Yao J, Wang R, Wang C, Zhao Y, Wang L. A photoelectrochemical biosensor based on SnO 2 nanoparticles for phosphatidylcholine detection in soybean oil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5157-5164. [PMID: 34664559 DOI: 10.1039/d1ay01406d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A photoelectrochemical (PEC) biosensor based on SnO2 nanoparticles (SnO2 NPs) was developed and applied for phosphatidylcholine (PC) detection in soybean oil. SnO2 NPs were grown on an indium tin oxide (ITO) electrode, polythionine (PTh) was electropolymerized on the surface of ITO/SnO2 NPs, and choline oxidase (ChOx) was immobilized to prepare the ITO/SnO2 NPs/PTh/ChOx electrode. The developed PEC biosensor can detect PC under visible light irradiation. The experimental conditions for PC detection were as follows: 1.8 mg mL-1 ChOx concentration, 0.5 V bias voltage, 18 mW cm-2 light intensity, and pH 6. The PEC biosensor had a detection limit of 0.005 mM (S/N = 3) and a detection range from 0.03 mM to 4 mM. This PEC biosensor based on SnO2 NPs was applied to detect PC in soybean oil. The recovery rate tested by the standard addition method was 95.2-107.4%. These findings were consistent with the results obtained by high-performance liquid chromatography (HPLC). Therefore, the proposed PEC biosensor based on SnO2 NPs has excellent reproducibility, stability, and great potential applications in the PEC analysis of PC in soybean oil.
Collapse
Affiliation(s)
- Yang Song
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Jing Yao
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Ruiying Wang
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| | - Cuntang Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Yue Zhao
- College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Liqi Wang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
- School of Computer and Information Engineering, Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, 150028, China
| |
Collapse
|
8
|
Zhao X, He Y, Chen J, Zhang J, Chen L, Wang B, Wu C, Yuan Y. Identification and direct determination of fatty acids profile in oleic acid by HPLC-CAD and MS-IT-TOF. J Pharm Biomed Anal 2021; 204:114238. [PMID: 34273659 DOI: 10.1016/j.jpba.2021.114238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/17/2021] [Accepted: 06/29/2021] [Indexed: 01/27/2023]
Abstract
Oleic acid is a pharmaceutical excipient and has been widely used in many dosage forms. It remains unclear in terms of the fatty acids (FAs) profile. In this study, a sensitive and direct method based on high-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) was developed to study the compositions of oleic acid. The chromatographic conditions were optimized to achieve good separation and high sensitivity. The components of oleic acid were identified by ion trap/time of flight mass spectrometry (MS-IT-TOF). Twenty-seven FAs were identified based on the exact mass-to-charge ratio and fragments, among which 13 FAs were confirmed with the reference standards. Nine FAs in the oleic acid samples including oleic acid, linolenic acid, myristic acid, palmitoleic acid, linoleic acid, palmitic acid, stearic acid, arachidic acid and behenic acid were simultaneously determined by the developed HPLC-CAD, which showed good linearity with r2>0.999. The limit of detection (LOD) and limit of quantification (LOQ) of 9 FAs were 0.006-0.1 μg mL-1 and 0.032-0.22 μg mL-1, respectively. The components with concentration level not less than 0.03 % (referring to the sample concentration of 1.0 mg mL-1) can be quantified. The mean recovery values of 9 FAs ranged from 96.5%-103.6% at three concentration levels of 80 %, 100 % and 120 %. The repeatability and intermediate precision were less than 5.0 % for oleic acid and components with concentration levels more than 0.05 %. In contrast to the conventional pre-column derivatization gas chromatography (GC), HPLC-CAD could unbiasedly and directly detect more components, especially the FAs with long carbon chains. Overall, the developed novel HPLC-CAD method can ameliorate the deficiency of the indirect GC method recorded in current pharmacopeias, thus having great potential for the comprehensive understanding and quality control of oleic acid.
Collapse
Affiliation(s)
- Xun Zhao
- Chemical Laboratory Second Laboratory, Jiangsu Institute for Drug and Food Control, Nanjing, China; NMPA Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Beijing, China
| | - Yuanzi He
- China Pharmaceutical University, Nanjing, China
| | - Jungen Chen
- China Pharmaceutical University, Nanjing, China
| | | | - Lei Chen
- Chinese Pharmacopoeia Commission, Beijing, China
| | - Baocheng Wang
- Nanjing Well Pharmaceutical Co., LTD., Nanjing, China
| | - Chunyong Wu
- China Pharmaceutical University, Nanjing, China.
| | - Yaozuo Yuan
- Chemical Laboratory Second Laboratory, Jiangsu Institute for Drug and Food Control, Nanjing, China; NMPA Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Beijing, China.
| |
Collapse
|
9
|
Vítová M, Palyzová A, Řezanka T. Plasmalogens - Ubiquitous molecules occurring widely, from anaerobic bacteria to humans. Prog Lipid Res 2021; 83:101111. [PMID: 34147515 DOI: 10.1016/j.plipres.2021.101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
Plasmalogens are a group of lipids mainly found in the cell membranes. They occur in anaerobic bacteria and in some protozoa, invertebrates and vertebrates, including humans. Their occurrence in plants and fungi is controversial. They can protect cells from damage by reactive oxygen species, protect other phospholipids or lipoprotein particles against oxidative stress, and have been implicated as signaling molecules and modulators of membrane dynamics. Biosynthesis in anaerobic and aerobic organisms occurs by different pathways, and the main biosynthetic pathway in anaerobic bacteria was clarified only this year (2021). Many different analytical techniques have been used for plasmalogen analysis, some of which are detailed below. These can be divided into two groups: shotgun lipidomics, or electrospray ionization mass spectrometry in combination with high performance liquid chromatography (LC-MS). The advantages and limitations of both techniques are discussed here, using examples from anaerobic bacteria to specialized mammalian (human) organs.
Collapse
Affiliation(s)
- Milada Vítová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Cell Cycles of Algae, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Andrea Palyzová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tomáš Řezanka
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
10
|
Yamamoto S, Kato S, Senoo N, Miyoshi N, Morita A, Miura S. Differences in phosphatidylcholine profiles and identification of characteristic phosphatidylcholine molecules in meat animal species and meat cut locations. Biosci Biotechnol Biochem 2021; 85:1205-1214. [PMID: 33686423 DOI: 10.1093/bbb/zbab010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 11/14/2022]
Abstract
Phosphatidylcholine (PC) is an essential component of the plasma membrane. Its profile varies with species and tissues. However, the PC profiles in meat have not been explored in depth. This study aimed to investigate the differences in PC profiles between various meat animal species and meat cut sites, along with the identification of characteristic PC molecules. The results demonstrated that the PC profiles of chicken meat differed from those of other species. Significant differences were also observed between the PC profiles of pork meat and the meat obtained from other species. The amount of PCs containing ether bonds was high in pork meat. PCs containing an odd number of carbon atoms were characteristic of beef and lamb meats. Furthermore, PC profiles differed based on the muscle location in chicken and pork. These results suggest that the PC profiles of skeletal muscles are indicators of animal species and muscle location.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Research and Development Department, Prima Meat Packers, Ltd., Tsuchiura, Japan
| | - Shigeki Kato
- Research and Development Department, Prima Meat Packers, Ltd., Tsuchiura, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
11
|
Real-time detection of authenticity and adulteration of krill phospholipids with soybean phospholipids using rapid evaporative ionization mass spectrometry: Application on commercial samples. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Big game cervid meat as a potential good source of plasmalogens for functional foods. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Reduced gonadotroph stimulation by ethanolamine plasmalogens in old bovine brains. Sci Rep 2021; 11:4757. [PMID: 33637828 PMCID: PMC7910589 DOI: 10.1038/s41598-021-84306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Ethanolamine plasmalogens (EPls), unique alkenylacyl-glycerophospholipids, are the only known ligands of G-protein-coupled receptor 61—a novel receptor co-localised with gonadotropin-releasing hormone receptors on anterior pituitary gonadotrophs. Brain EPl decreases with age. Commercial EPl—extracted from the cattle brain (unidentified age)—can independently stimulate FSH secretion from gonadotrophs. We hypothesised that there exists an age-related difference in the quality, quantity, and ability of bovine brain EPls to stimulate bovine gonadotrophs. We compared the brains of young (about 26 month old heifers) and old (about 90 month old cows) Japanese Black bovines, including EPls obtained from both groups. Additionally, mRNA expressions of the EPl biosynthesis enzymes, glyceronephosphate O-acyltransferase, alkylglycerone phosphate synthase, and fatty acyl-CoA reductase 1 (FAR1) were evaluated in young and old hypothalami. The old-brain EPl did not stimulate FSH secretion from gonadotrophs, unlike the young-brain EPl. Molecular species of EPl were compared using two-dimensional liquid chromatography-mass spectrometry. We identified 20 EPl molecular species of which three and three exhibited lower (P < 0.05) and higher (P < 0.05) ratios, respectively, in old compared to young brains. In addition, quantitative reverse transcription-polymerase chain reaction detected higher FAR1 levels in the POA, but not in the ARC&ME tissues, of old cows than that of fertile young heifers. Therefore, old-brain EPl may be associated with age-related infertility.
Collapse
|
14
|
Recent applications of the Charged Aerosol Detector for liquid chromatography in drug quality control. J Chromatogr A 2020; 1619:460911. [DOI: 10.1016/j.chroma.2020.460911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023]
|
15
|
Montero L, Herrero M. Two-dimensional liquid chromatography approaches in Foodomics – A review. Anal Chim Acta 2019; 1083:1-18. [DOI: 10.1016/j.aca.2019.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023]
|