1
|
Liu Y, Li X, Pu Q, Fu R, Wang Z, Li Y, Li X. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131541. [PMID: 37146326 DOI: 10.1016/j.jhazmat.2023.131541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Aromatic amines, one of the most widely used low-cost antioxidants in rubbers, have been regarded as pollutants with human health concerns. To overcome this problem, this study developed a systematic molecular design, screening, and performance evaluation method to design functionally improved, environmentally friendly and synthesizable aromatic amine alternatives for the first time. Nine of 33 designed aromatic amine derivatives have improved antioxidant property (lower bond dissociation energy of N-H), and their environmental and bladder carcinogenicity impacts were evaluated through toxicokinetic model and molecular dynamics simulation. The environmental fate of the designed AAs-11-8, AAs-11-16, and AAs-12-2 after antioxidation (i.e., peroxyl radicals (ROO·), hydroxyl radicals (HO·), superoxide anion radicals (O2·-) and ozonation reaction) was also analyzed. Results showed that the by-products of AAs-11-8 and AAs-12-2 have less toxicity after antioxidation. In addition, human bladder carcinogenicity of the screened alternatives was also evaluated through adverse outcome pathway. The carcinogenic mechanisms were analyzed and verified through amino acid residue distribution characteristics, 3D-QSAR and 2D-QSAR models. AAs-12-2, with high antioxidation property, low environmental impacts and carcinogenicity, was screened as the optimum alternative for 3,5-Dimethylbenzenamine. This study provided theoretical support for designing environmentally friendly and functionally improved aromatic amine alternatives from toxicity evaluation and mechanism analysis.
Collapse
Affiliation(s)
- Yajing Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xinao Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Rui Fu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Zhonghe Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| |
Collapse
|
2
|
Abu-Bakar A, Tan BH, Halim H, Ramli S, Pan Y, Ong6 CE. Cytochromes P450: Role in Carcinogenesis and Relevance to Cancers. Curr Drug Metab 2022; 23:355-373. [DOI: 10.2174/1389200223666220328143828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Abstracts:
Cancer is a leading factor of mortality globally. Cytochrome P450 (CYP) enzymes play a pivotal role in the biotransformation of both endogenous and exogenous compounds. Evidence from numerous epidemiological, animal, and clinical studies points to instrumental role of CYPs in cancer initiation, metastasis, and prevention. Substantial research has found that CYPs are involved in activating different carcinogenic chemicals in the environment, such as polycyclic aromatic hydrocarbons and tobacco-related nitrosamines. Electrophilic intermediates produced from these chemicals can covalently bind to DNA, inducing mutation and cellular transformation that collectively result in cancer development. While bioactivation of procarcinogens and promutagens by CYPs has long been established, the role of CYP-derived endobiotics in carcinogenesis has emerged in recent years. Eicosanoids derived from arachidonic acid via CYP oxidative pathways have been implicated in tumorigenesis, cancer progression and metastasis. The purpose of this review is to update on the current state of knowledge about the cancer molecular mechanism involving CYPs with focus on the biochemical and biotransformation mechanisms in the various CYP-mediated carcinogenesis, and the role of CYP-derived reactive metabolites, from both external and endogenous sources, on cancer growth and tumour formation.
Collapse
Affiliation(s)
- A’edah Abu-Bakar
- Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, PETRONAS, Kuala Lumpur, Malaysia
| | - Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Hasseri Halim
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Faculty of Pharmacy, Universiti Teknologi MARA, Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong6
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Baldauf KJ, Salazar-González RA, Doll MA, Pierce WM, States JC, Hein DW. Role of Human N-Acetyltransferase 2 Genetic Polymorphism on Aromatic Amine Carcinogen-Induced DNA Damage and Mutagenicity in a Chinese Hamster Ovary Cell Mutation Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:235-245. [PMID: 31490564 PMCID: PMC7017392 DOI: 10.1002/em.22331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 05/10/2023]
Abstract
Carcinogenic aromatic amines such as 4-aminobiphenyl (ABP) and 2-aminofluorene (AF) require metabolic activation to form electrophilic intermediates that mutate DNA leading to carcinogenesis. Bioactivation of these carcinogens includes N-hydroxylation catalyzed by CYP1A2 followed by O-acetylation catalyzed by arylamine N-acetyltransferase 2 (NAT2). To better understand the role of NAT2 genetic polymorphism in ABP- and AF-induced mutagenesis and DNA damage, nucleotide excision repair-deficient (UV5) Chinese hamster ovary (CHO) cells were stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles. ABP and AF both caused significantly (P < 0.001) greater mutagenesis measured at the hypoxanthine phosphoribosyl transferase (hprt) locus in the UV5/CYP1A2/NAT2*4 acetylator cell line compared to the UV5, UV5/CYP1A2, and UV5/CYP1A2/NAT2*5B cell lines. ABP- and AF-induced hprt mutant cDNAs were sequenced and over 80% of the single-base substitutions were at G:C base pairs. DNA damage also was quantified by γH2AX in-cell western assays and by identification and quantification of the two predominant DNA adducts, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) by liquid chromatography-mass spectrometry. DNA damage and adduct levels were dose-dependent, correlated highly with levels of hprt mutants, and were significantly (P < 0.0001) greater in the UV5/CYP1A2/NAT2*4 rapid acetylator cell line following treatment with ABP or AF as compared to all other cell lines. Our findings provide further clarity on the importance of O-acetylation in CHO mutagenesis assays for aromatic amines. They provide evidence that NAT2 genetic polymorphism modifies aromatic amine-induced DNA damage and mutagenesis that should be considered in human risk assessments following aromatic amine exposures. Environ. Mol. Mutagen. 61:235-245, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Hein
- Correspondence to: David W. Hein, Kosair Charities CTR-Room 303, 505 South Hancock Street, Louisville, Kentucky 40202.
| |
Collapse
|
4
|
Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol Ther 2019; 200:179-189. [DOI: 10.1016/j.pharmthera.2019.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
|
5
|
Majuta SN, Li C, Jayasundara K, Kiani Karanji A, Attanayake K, Ranganathan N, Li P, Valentine SJ. Rapid Solution-Phase Hydrogen/Deuterium Exchange for Metabolite Compound Identification. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1102-1114. [PMID: 30980382 DOI: 10.1007/s13361-019-02163-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 05/25/2023]
Abstract
Rapid, solution-phase hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is demonstrated as a means for distinguishing small-molecule metabolites. HDX is achieved using capillary vibrating sharp-edge spray ionization (cVSSI) to allow sufficient time for reagent mixing and exchange in micrometer-sized droplets. Different compounds are observed to incorporate deuterium with varying efficiencies resulting in unique isotopic patterns as revealed in the MS spectra. Using linear regression techniques, parameters representing contribution to exchange by different hydrogen types can be computed. In this proof-of-concept study, the exchange parameters are shown to be useful in the retrodiction of the amount of deuterium incorporated within different compounds. On average, the exchange parameters retrodict the exchange level with ~ 2.2-fold greater accuracy than treating all exchangeable hydrogens equally. The parameters can be used to produce hypothetical isotopic distributions that agree (± 16% RMSD) with experimental measurements. These initial studies are discussed in light of their potential value for identifying challenging metabolite species.
Collapse
Affiliation(s)
- Sandra N Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Kinkini Jayasundara
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Kushani Attanayake
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Nandhini Ranganathan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|