1
|
Cortés-Bautista S, Molins-Legua C, Campíns-Falcó P. Miniaturized liquid chromatography in environmental analysis. A review. J Chromatogr A 2024; 1730:465101. [PMID: 38941795 DOI: 10.1016/j.chroma.2024.465101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.
Collapse
Affiliation(s)
- S Cortés-Bautista
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - C Molins-Legua
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - P Campíns-Falcó
- Department Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Hu J, Yang Y, Guan Y, Li R, Liu C, Yao G, Zhao W. Determination of benzimidazole pesticide residues in soil by ultrasound‐assisted supramolecular solvent microextraction. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Jiabao Hu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yuqi Yang
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Yunlei Guan
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Rui Li
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Chunxiao Liu
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| | - Guojun Yao
- Total Component Analysis Laboratory Nutrichem Co., Ltd. Beijing P. R. China
| | - Wenting Zhao
- College of Bioscience and Resources Environment Beijing University of Agriculture Beijing P. R. China
- Key Laboratory of Urban Agriculture In North China Ministry of Agriculture and Rural Affairs, P. R. China, Beijing University of Agriculture Beijing P. R. China
| |
Collapse
|
3
|
Kiszkiel-Taudul I, Starczewska B, Wierzbowska M. Development of chromatographic techniques connected with corona and tandem mass spectrometry detection systems for determination of amoxicillin in bovine milk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mokgehle TM, Madala NE, Tavengwa NT. Evaluation of a Chaotrope and Kosmotrope in the Multivariate Optimization of PHW-ATPE of Solasodine from Leaves of Solanum mauritianum. Molecules 2022; 27:molecules27175547. [PMID: 36080313 PMCID: PMC9457875 DOI: 10.3390/molecules27175547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
A hyphenated pressurized hot water—aqueous two-phase extraction (PHW-ATPE) method was applied to extract solasodine from Solanum mauritianum (S. mauritianum). A central composite design (CCD) was applied to determine the optimal conditions for the extraction of solasodine. The parameters evaluated included the percentage concentration of salt (NaCl or Na2CO3) and temperature. The fit of the central composite design response surface model for PHW-ATPE to the data generated a model with a good quadratic fit (R2 = 0.901). The statistically significant (p < 0.05) parameters, such as the linear and quadratic effects of the concentration of salt (%) powder, had a significant impact on the extraction of solasodine. The application of multiply charged salts such as Na2CO3 (kosmotrope) was shown to be a comparably better extractant of solasodine than NaCl (chaotrope) due to the salting-out effect. The optimized conditions for extraction of solasodine with NaCl or Na2CO3 were a temperature of 80 °C at a salt concentration of 20%. The maximum extraction of solasodine was 300.79 mg kg−1 and 162.34 mg kg−1 for Na2CO3 and NaCl, respectively.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
- Correspondence:
| |
Collapse
|
5
|
Bavlovič Piskáčková H, Nemeškalová A, Kučera R, Pedersen-Bjergaard S, Najmanová V, Štěrbová-Kovaříková P, Kuchař M, Sýkora D. Advanced microextraction techniques for the analysis of amphetamines in human breast milk and their comparison with conventional methods. J Pharm Biomed Anal 2021; 210:114549. [PMID: 34998075 DOI: 10.1016/j.jpba.2021.114549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Breast milk analysis provides useful information about acute newborn exposure to harmful substances, such as psychoactive drugs abused by a nursing mother. Since breast milk represents a complex matrix with large amounts of interfering compounds, a comprehensive sample pre-treatment is necessary. This work focuses on determination of amphetamines and synthetic cathinones in human breast milk by microextraction techniques (liquid-phase microextraction and electromembrane extraction), and their comparison to more conventional treatment methods (protein precipitation, liquid-liquid extraction, and salting-out assisted liquid-liquid extraction). The aim of this work was to optimize and validate all the extraction procedures and thoroughly assess their advantages and disadvantages with special regard to their routine clinical use. The applicability of the extractions was further verified by the analysis of six real samples collected from breastfeeding mothers suspected of amphetamine abuse. The membrane microextraction techniques turned out to be the most advantageous as they required low amounts of organic solvents but still provided efficient sample clean-up, excellent quantification limit (0.5 ng mL-1), and good recovery (81-91% and 40-89% for electromembrane extraction and liquid-phase microextraction, respectively). The traditional liquid-liquid extraction as well as the salting-out assisted liquid-liquid extraction showed comparable recoveries (41-85% and 63-88%, respectively), but higher quantification limits (2.5 ng mL-1 and 5 ng mL-1, respectively). Moreover, these methods required multiple operating steps and were time consuming. Protein precipitation was fast and simple, but it demonstrated poor sample clean-up, low recovery (56-58%) and high quantification limit (5 ng mL-1). Based on the overall results, microextraction methods can be considered promising candidates, even for routine laboratory use.
Collapse
Affiliation(s)
- Hana Bavlovič Piskáčková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Alžběta Nemeškalová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O.Box 1068 Blindern, 0316, Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Věra Najmanová
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 121 08 Prague 2, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
6
|
Determination of Levamisole and Mebendazole and Its Two Metabolite Residues in Three Poultry Species by HPLC-MS/MS. Foods 2021; 10:foods10112841. [PMID: 34829122 PMCID: PMC8624778 DOI: 10.3390/foods10112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/29/2022] Open
Abstract
A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to simultaneously analyze levamisole (LMS) and mebendazole (MBZ) and its two metabolites, 5-hydroxymebendazole (HMBZ) and 2-amino-5-benzoylbenzimidazole (AMBZ), in poultry muscle (chicken, duck and goose). In the sample preparation process, basic ethyl acetate was used as the extraction agent, and the extracted samples were back-extracted with hydrochloric acid, purified by Oasis MCX solid-phase extraction (SPE) cartridges, and reconstituted in the initial mobile phase after being blown dry with nitrogen. Chromatographic separation was performed on an Xbridge C18 column (4.6 mm × 150 mm, 5 μm) with 0.1% formic acid in water and acetonitrile as the mobile phases, and gradient elution was performed at a flow rate of 0.6 mL/min and a column temperature of 35 °C. In blank poultry muscle samples, the spiked concentrations of LMS, MBZ, HMBZ, and AMBZ were within the range of the limit of quantitation (LOQ) to 25 μg/kg. The peak areas of the four target drugs had a good linear relationship with the concentration, and the determination coefficient (R2) values were higher than 0.9990. The average recoveries of LMS, MBZ, HMBZ, and AMBZ were 86.77–96.94%; the intraday relative standard deviations (RSDs) were 1.75–4.99% at LOQ, 0.5 maximum residue limit (MRL), 1.0 MRL, and 2.0 MRL; the interday RSDs were 2.54–5.52%; and the LODs and LOQs were 0.04–0.30 μg/kg and 0.12–0.80 μg/kg, respectively.
Collapse
|
7
|
Pretreatment and determination methods for benzimidazoles: An update since 2005. J Chromatogr A 2021; 1644:462068. [PMID: 33836299 DOI: 10.1016/j.chroma.2021.462068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
Benzimidazoles, commonly used as pesticides and veterinary drugs, have posed a threat to human health and the environment due to unreasonable use and lack of valid regulation. Therefore, an up-to-date and comprehensive summary of the pretreatment and analytical approaches in different substrates is urgently needed. The present review consequently updates and covers various newly developed pretreatment methods (e.g., cationic micellar precipitation, magnetic-solid phase extraction, hollow fiber liquid phase microextraction, disperse liquid-liquid microextraction-solidified floating organic drop, stir cake sorptive extraction, solid phase microextraction method, QuEChERS, and molecular imprinted polymer-based methods) since 2005. The review also elaborates and discusses different determination methods (e.g., newly developed HPLC and related methods, improved spectrofluorimetry methods, capillary electrophoresis, and the electrochemical sensor). Furthermore, some critical points and prospects are highlighted, to describe the trends in this area.
Collapse
|
8
|
Hussain A, Pu H, Hu B, Sun DW. Au@Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118908. [PMID: 32949944 DOI: 10.1016/j.saa.2020.118908] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Surface-enhanced Raman spectroscopy based on thioglycolic acid (TGA) functionalized silver-coated gold nanoparticles (Au@Ag-TGANPs) was developed for the facile screening of thiabendazole (TBZ) and ferbam (0.025-10 ppm) in liquid milk for the first time. Results showed that silver-coated gold nanoparticles (Au@AgNPs) with a core size of 32 nm and a shell thickness of 5 nm was successfully modified with 3 nm TGA. The sensitive Au@Ag-TGANPs could enhance TBZ and ferbam signals by factors of 6.4 × 104 and 9.8 × 104, respectively, and achieved the detection of TBZ and ferbam with limits of detection of 0.12 and 0.003 ppm, R2 of 0.988 and 0.9821, percent recoveries of 88-103% and of 87.2-103.5%, and relative standard deviations of 4.1-9.2% and 3.5-8.3%, respectively. The current simple and green method could thus be used to detect other unsafe chemicals in future studies.
Collapse
Affiliation(s)
- Abid Hussain
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Bingxue Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Pasupuleti RR, Gurrani S, Tsai PC, Ponnusamy VK. Novel Salt-Assisted Liquid-Liquid Microextraction Technique for Environmental, Food, and Biological Samples Analysis Applications: A Review. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411017999201228212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Sample preparation has gained significant recognition in the chemical analysis workflow. Substantial efforts have been made to simplify the comprehensive process of sample preparation that is focused on green sample preparation methodology, including the miniaturization of extraction method, elimination of the sample pre-treatment as well as the post-treatment steps, elimination of toxic as well as hazardous organic solvent consumption, reduction in sample volume requirements, reducing the extraction time, maximization of the extraction efficiency and possible automation.
Methods::
Among various microextraction processes, liquid-phase microextraction (LPME) is most abundantly used in the extraction of the target analytes. The salting-out phenomenon has been introduced into the LPME procedure and has been raised as a new technique called the ‘Salt-Assisted Liquid-Liquid Microextraction (SALLME)’. The principle is based on decreasing the solubility of less polar solvent or analyte with an increase in the concentration of the salt in aqueous solution leading to two-phase separation.
Conclusion::
SALLME proved to be a simple, rapid, and cost-effective sample preparation technique for the efficient extraction and preconcentration of organic and inorganic contaminants from various sample matrices, including environmental, biological, and food samples. SALLME exhibits higher extraction efficiency and recovery and compatible with multiple analytical instruments. This review provides an overview of developments in SALLME technique and its applications to till date.
Collapse
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medicinal and Applied Chemistry, Nano and Green Analytical Lab, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Swapnil Gurrani
- Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Nano and Green Analytical Lab, Kaohsiung Medical University (KMU), Kaohsiung City-807,, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City-804,, Taiwan
| |
Collapse
|
10
|
Oliveira IGC, Queiroz MEC. A micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry to determine anandamide and 2-arachidonoylglycerol in rat brain samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122351. [PMID: 32882531 DOI: 10.1016/j.jchromb.2020.122351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
A simple and reliable method was developed and validated to determine the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in rat brain samples by micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry (SALLLE/UHPLC-MS/MS). The SALLE parameters (brain homogenate volume, salting-out agent, salt concentration, salt solution volume, organic solvent, organic solvent volume, and centrifugation temperature) were optimized to improve sensitivity and selectivity of the method. The SALLE/UHPLC-MS/MS method presented linear ranges from 2.00 to 20.00 ng mL-1 for AEA and from 0.300 to 10.00 μg mL-1 for 2-AG, no significant matrix effect, and inter- and intra-assay precision and accuracy with CV and RSE values lower than 15%, respectively. This innovative method was successfully applied to determine AEA and 2-AG in brain hemispheres from a 6-OHDA animal model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Igor Gustavo Carvalho Oliveira
- Universidade de São Paulo (USP-RP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Avenida Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Maria Eugênia Costa Queiroz
- Universidade de São Paulo (USP-RP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Avenida Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Li S, Zhang Q, Chen M, Zhang X, Liu P. Determination of veterinary drug residues in food of animal origin: Sample preparation methods and analytical techniques. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Chen
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuejiao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Mejía-Carmona K, Maciel EVS, Lanças FM. Miniaturized liquid chromatography applied to the analysis of residues and contaminants in food: A review. Electrophoresis 2020; 41:1680-1693. [PMID: 32359175 DOI: 10.1002/elps.202000019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
The humankind is pretty dependent on food to control several biological processes into the organism. As the world population increases, the demand for foodstuffs follows the same trend claiming for a high food production situation. For this reason, a substantial amount of chemicals is used in agriculture and livestock husbandries every year, enhancing the likelihood of contaminated foodstuffs being commercialized. This outlook becomes a public health concern; thus, the governmental regulatory agencies impose laws to control the residues and contaminants in food matrices. Currently, one of the most important analytical techniques to perform it is LC. Despite its already recognized effectiveness, it is often time consuming and requires significant volumes of reagents, which are transformed into toxic waste. In this context, miniaturized LC modes emerge as a greener and more effective analytical technique. They have remarkable advantages, including higher sensitivity, lower sample amount, solvent and stationary phase requirements, and more natural coupling to MS. In this review, most of the critical characteristics of them are discussed, focusing on the benchtop instruments and their related analytical columns. Additionally, a discussion regarding the last 10 years of publications reporting miniaturized LC application for the analysis of natural and industrial food samples is categorized. The main chemical classes as applied in the crops are highlighted, including pesticides, veterinary drugs, and mycotoxins.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Miniaturized liquid chromatography focusing on analytical columns and mass spectrometry: A review. Anal Chim Acta 2020; 1103:11-31. [DOI: 10.1016/j.aca.2019.12.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
|
14
|
Heydarzadeh M, Givianrad MH, Heydari R, Aberoomand Azar P. Salt-assisted liquid-liquid extraction in microchannel. J Sep Sci 2019; 42:3217-3224. [PMID: 31389112 DOI: 10.1002/jssc.201900512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/24/2023]
Abstract
In this study, for the first time, salt-assisted liquid-liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1-30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt-assisted liquid-liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt-assisted liquid-liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples.
Collapse
Affiliation(s)
- Mohsen Heydarzadeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Rouhollah Heydari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Development and application of SBA‐15 assisted electromembrane extraction followed by corona discharge ion mobility spectrometry for the determination of Thiabendazole in fruit juice samples. J Sep Sci 2019; 42:1786-1793. [DOI: 10.1002/jssc.201800676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/04/2019] [Accepted: 02/22/2019] [Indexed: 11/07/2022]
|
16
|
Total determination of triclabendazole and its metabolites in bovine tissues using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:54-59. [PMID: 30721796 DOI: 10.1016/j.jchromb.2019.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022]
Abstract
A reliable LC-MS/MS analytical method for the determination of residual triclabendazole and its principal metabolites (triclabendazole sulfoxide, triclabendazole sulfone and keto-triclabendazole) in bovine tissues was developed, in which triclabendazole and its metabolites are oxidized to keto-triclabendazole as a marker residue. The method involves sample digestion with hot sodium hydroxide, thus releasing the bound residues of various triclabendazole metabolites in bovine tissues. The target compounds are extracted from the digest mixture with ethyl acetate, defatted by liquid-liquid partitioning using n-hexane and acetonitrile, then oxidized with hydrogen peroxide in a mixture of ethanol and acetic acid. The reaction mixture is cleaned up using a strong cation exchange cartridge (Oasis MCX) and the analytes are quantified using LC-MS/MS. The optimal conditions for the complete oxidation of triclabendazole and its metabolites to keto-triclabendazole are an incubation time of 16 h and a temperature of 90 °C. The developed method was evaluated using three bovine samples: muscle, fat, and liver. Samples were spiked with triclabendazole and its principal metabolites at 0.01 mg/kg and at the Japanese Maximum Residue Limits (MRLs) established for each sample. The validation results show excellent recoveries (81-102%) and precision (<10%) for all target compounds. The limit of quantification (S/N ≥ 10) of the developed method is 0.01 mg/kg. These results suggest the developed method is applicable to quantifying residual triclabendazole in bovine tissues in compliance with the MRLs established by the Codex Alimentarius and EU and Japanese regulations, and thus the proposed method will be a useful tool for the regulatory monitoring of residual triclabendazole and its metabolites.
Collapse
|