1
|
Modarressi SM, Koolivand Z, Akbari M. Enhancing hyaluronidase enzyme activity: Insights from advancement in bovine and ovine testicular hyaluronidase purification. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124031. [PMID: 38330521 DOI: 10.1016/j.jchromb.2024.124031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
This essay investigates the use of an affinity resin named Capto lentil lectin for the purification of bovine and ovine testicular hyaluronidase. Hyaluronidase, an enzyme that degrades hyaluronic acid, is used widely in medical fields like dermatology, orthopedics, and ophthalmology. The research highlights the importance of optimizing the purification process to increase enzyme activity and purity. A new purification method is proposed, which begins with ammonium sulfate precipitation, followed by Blue Sepharose and Capto Lentil Lectin chromatography. This novel approach significantly increases the yield, purity, and activity of the enzyme. This study paves the way for further research into improving the purification process. The study further discusses challenges in identifying hyaluronidase bands using SDS-PAGE and highlights the necessity of using Western blotting for precise results.
Collapse
Affiliation(s)
| | | | - Mojdeh Akbari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang YS, Gong JS, Yao ZY, Jiang JY, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Insights into the source, mechanism and biotechnological applications of hyaluronidases. Biotechnol Adv 2022; 60:108018. [PMID: 35853550 DOI: 10.1016/j.biotechadv.2022.108018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
It has long been found that hyaluronidases exist in a variety of organisms, playing their roles in various biological processes including infection, envenomation and metabolic regulation through degrading hyaluronan. However, exploiting them as a bioresource for specific applications had not been extensively studied until the latest decades. In recent years, new application scenarios have been developed, which extended the field of application, and emphasized the research value of hyaluronidase. This critical review comprehensively summarizes existing studies on hyaluronidase from different source, particularly in their structures, action patterns, and biological functions in human and mammals. Furthermore, we give in-depth insight into the resource mining and protein engineering process of hyaluronidase, as well as strategies for their high-level production, indicating that mixed strategies should be adopted to obtain well-performing hyaluronidase with efficiency. In addition, advances in application of hyaluronidase were summarized and discussed. Finally, prospects for future researches are proposed, highlighting the importance of further investigation into the characteristics of hyaluronidases, and the necessity of investigating their products for the development of their application value.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zhi-Yuan Yao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Cheng S, Liang C, Geng P, Guo Z, Li Y, Zhang L, Shi G. Affinity adsorption of phospholipase A 1 with designed ligand binding to catalytic pocket. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122402. [PMID: 33130354 DOI: 10.1016/j.jchromb.2020.122402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
An affinity ligand was designed from 1-aminocyclohexane based on the crystal structure of Streptomyces albidoflavus phospholipase A1 (saPLA1) by using Discovery Studio software. The molecular docking results indicated that the designed ligand could interact with the active pocket of saPLA1. Epichlorohydrin, cyanuric chloride and 1-aminocyclohexane were used to synthesize the affinity ligand, which was composed to Sepharose beads. The density of the ligand on Sepharose beads was 22.5 ± 1.1 μmol/g wet gel. Adsorption analysis of the sorbent indicated the maximum adsorption (Qmax) of the enzyme was 10.7 ± 0.29 mg/g and the desorption constant (Kd) was 426.6 ± 29.7 μg/mL. The sorbent could bind the enzyme in the supernatant of disrupted recombinant Escherichia coli through one step of affinity adsorption. After the optimization of the purification process, a single band was obtained at approximately 30 kDa, which was confirmed as saPLA1 by the matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry and activity assay. The purity of the isolated enzyme was about 96.6% with the purify fold at 7.62, and the activity recovery was 52.5%.
Collapse
Affiliation(s)
- Shi Cheng
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Chaojuan Liang
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Peng Geng
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Zitao Guo
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Youran Li
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Liang Zhang
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| | - Guiyang Shi
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| |
Collapse
|