1
|
Khaliullina A, Kolesnikova A, Khairullina L, Morgatskaya O, Shakirova D, Patov S, Nekrasova P, Bogachev M, Kurkin V, Trizna E, Kayumov A. The Antimicrobial Potential of the Hop ( Humulus lupulus L.) Extract against Staphylococcus aureus and Oral Streptococci. Pharmaceuticals (Basel) 2024; 17:162. [PMID: 38399377 PMCID: PMC10893079 DOI: 10.3390/ph17020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Plant extracts are in the focus of the pharmaceutical industry as potential antimicrobials for oral care due to their high antimicrobial activity coupled with low production costs and safety for eukaryotic cells. Here, we show that the extract from Hop (Humulus lupulus L.) exhibits antimicrobial activity against Staphylococcus aureus and Streptococci in both planktonic and biofilm-embedded forms. An extract was prepared by acetone extraction from hop infructescences, followed by purification and solubilization of the remaining fraction in ethanol. The effect of the extract on S. aureus (MSSA and MRSA) was comparable with the reference antibiotics (amikacin, ciprofloxacin, and ceftriaxone) and did not depend on the bacterial resistance to methicillin. The extract also demonstrated synergy with amikacin on six S. aureus clinical isolates, on four of six isolates with ciprofloxacin, and on three of six isolates with ceftriaxone. On various Streptococci, while demonstrating lower antimicrobial activity, an extract exhibited a considerable synergistic effect in combination with two of three of these antibiotics, decreasing their MIC up to 512-fold. Moreover, the extract was able to penetrate S. aureus and S. mutans biofilms, leading to almost complete bacterial death within them. The thin-layer chromatography and LC-MS of the extract revealed the presence of prenylated flavonoids (2',4',6',4-tetrahydroxy-3'-geranylchalcone) and acylphloroglucides (cohumulone, colupulone, humulone, and lupulone), apparently responsible for the observed antimicrobial activity and ability to increase the efficiency of antibiotics. Taken together, these data suggest an extract from H. lupulus as a promising antimicrobial agent for use both as a solely antiseptic and to potentiate conventional antimicrobials.
Collapse
Affiliation(s)
- Alyona Khaliullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Alyona Kolesnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Leysan Khairullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Olga Morgatskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Dilyara Shakirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Sergey Patov
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Polina Nekrasova
- Institute of Chemistry, FRC “Komi Scientific Centre”, Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia; (S.P.); (P.N.)
| | - Mikhail Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 5 Professor Popov Street, 197022 St. Petersburg, Russia;
| | - Vladimir Kurkin
- Institute of Pharmacy, Samara State Medical University, 443079 Samara, Russia;
| | - Elena Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.K.); (A.K.); (L.K.); (O.M.); (D.S.); (E.T.)
| |
Collapse
|
2
|
Fischer B, Gevinski EV, da Silva DM, Júnior PAL, Bandiera VJ, Lohmann AM, Rigo D, Duarte PF, Franceschi E, Zandoná GP, Rombaldi CV, Cansian RL, Paroul N, Junges A. Extraction of hops pelletized (Humulus lupulus) with subcritical CO2 and hydrodistillation: Chemical composition identification, kinetic model, and evaluation of antioxidant and antimicrobial activity. Food Res Int 2023; 167:112712. [PMID: 37087215 DOI: 10.1016/j.foodres.2023.112712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Hop essential oil and hop extract using carbon dioxide (CO2) are products with high added value because they have bioactive and sensory properties. In this context, the objective of this study was to obtain and characterize essential oil and extracts from pelleted hops of El Dorado, Polaris, Hallertau Blanc and Callista varieties using hydrodistillation and subcritical CO2 extraction methods. Extraction yield ranged from 0.38 % to 1.97 % (m/m) for essential oils and from 8.76 % to 15.35 % (m/m) for extracts using subcritical CO2. The chemical compositions of the essential oils were mainly monoterpene (18.14 % to 29.91 %) and sesquiterpene (46.01 % to 59.03 %) hydrocarbons and for the extracts were sesquiterpene hydrocarbons (33.05 % to 71.90 %) and oxygenated sesquiterpenes (14.80 % to 34.89 %). The extracts showed better antioxidant activity than essential oils due to the presence of phenolic compounds and flavonoids. Hop extracts showed some antimicrobial activity, but essential oils did not demonstrate antimicrobial potential. Hop extracts obtained with subCO2 have the potential to be used in the brewing industry as a flavoring and as natural antioxidants.
Collapse
Affiliation(s)
- Bruno Fischer
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Eduardo Vinicios Gevinski
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Diego Maroso da Silva
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Paulo Amaurí Lando Júnior
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Valmor José Bandiera
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Andreia Menin Lohmann
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Diane Rigo
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Patrícia Fonseca Duarte
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Elton Franceschi
- Center for Research on Colloidal Systems (NUESC), Institute of Research and Technology (ITP), Tiradentes University (UNIT), Aracaju, SE 49032-490, Brazil
| | - Giovana Paula Zandoná
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Capão do Leão Campus, s/n, RS 96010-900, Pelotas, RS, Brazil
| | - Cesar Valmor Rombaldi
- Agroindustrial Science and Technology Department, Federal University of Pelotas, Capão do Leão Campus, s/n, RS 96010-900, Pelotas, RS, Brazil
| | - Rogério Luis Cansian
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Natalia Paroul
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil
| | - Alexander Junges
- Department of Food and Chemical Engineering, URI Erechim, Av. Sete de Setembro 1621, Erechim, RS 99709-910, Brazil.
| |
Collapse
|
3
|
Fahle A, Bereswill S, Heimesaat MM. Antibacterial effects of biologically active ingredients in hop provide promising options to fight infections by pathogens including multi-drug resistant bacteria. Eur J Microbiol Immunol (Bp) 2022; 12:22-30. [PMID: 35417405 PMCID: PMC9036650 DOI: 10.1556/1886.2022.00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance constitutes a global threat to the health care systems. The number of infections due to multidrug-resistant (MDR) bacteria increases progressively resulting in an estimated annual number of 750,000 fatal cases worldwide. Additionally, the lack of novel antibiotic compounds worsens the dilemma. Hence, there is an urgent need for alternative ways to fight antibiotic resistance. One option may be natural compounds with antibacterial properties such as hop and its biologically active ingredients which are used in traditional medicine since ancient times. This prompted us to perform an actual literature survey regarding the antibacterial properties of biologically active ingredients in hop including humulone, lupulone and xanthohumol. The 20 included studies revealed that lupulone and xanthohumol do in fact inhibit the growth of Gram-positive bacteria in vitro. In combination with distinct antibiotic compounds the hop ingredients can even exert synergistic effects resulting in enhanced antibiotic activities against defined Gram-positive and Gram-negative bacteria. In conclusion, biologically active ingredients in hop including lupulone and xanthohumol may be potential antibiotic compounds which either alone or in combination with other antibacterial substances open novel avenues in the combat of infections caused by pathogenic including MDR bacteria.
Collapse
Affiliation(s)
- Anton Fahle
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Zugravu CA, Bohiltea RE, Salmen T, Pogurschi E, Otelea MR. Antioxidants in Hops: Bioavailability, Health Effects and Perspectives for New Products. Antioxidants (Basel) 2022; 11:antiox11020241. [PMID: 35204124 PMCID: PMC8868281 DOI: 10.3390/antiox11020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Hop plant (Humulus lupulus L.) has been used by humans for ages, presumably first as a herbal remedy, then in the manufacturing of different products, from which beer is the most largely consumed. Female hops cones have different useful chemical compounds, an important class being antioxidants, mainly polyphenols. This narrative review describes the main antioxidants in hops, their bioavailability and biological effects, and the results obtained by now in the primary and secondary prevention of several non-communicable diseases, such as the metabolic syndrome related diseases and oncology. This article presents in vitro and in vivo data in order to better understand what was accomplished in terms of knowledge and practice, and what needs to be clarified by additional studies, mainly regarding xantohumol and its derivates, as well as regarding the bitter acids of hops. The multiple protective effects found by different studies are hindered up to now by the low bioavailability of some of the main antioxidants in hops. However, there are new promising products with important health effects and perspectives of use as food supplements, in a market where consumers increasingly search for products originating directly from plants.
Collapse
Affiliation(s)
- Corina-Aurelia Zugravu
- Department of Hygiene and Ecology, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| | - Roxana-Elena Bohiltea
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; or
| | - Teodor Salmen
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N.C.Paulescu” National Institute of Diabetes, 030167 Bucharest, Romania
- Correspondence: ; Tel.: +40-743526731
| | - Elena Pogurschi
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 57 Marasti Blvd, 011464 Bucharest, Romania; or
| | - Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050463 Bucharest, Romania; or
| |
Collapse
|
5
|
Rodrigues Arruda T, Fontes Pinheiro P, Ibrahim Silva P, Campos Bernardes P. Exclusive Raw Material for Beer Production? Addressing Greener Extraction Techniques, the Relevance, and Prospects of Hops (Humulus lupulus L.) for the Food Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02716-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Strong Antimicrobial and Healing Effects of Beta-Acids from Hops in Methicillin-Resistant Staphylococcus aureus-Infected External Wounds In Vivo. Antibiotics (Basel) 2021; 10:antibiotics10060708. [PMID: 34204644 PMCID: PMC8231114 DOI: 10.3390/antibiotics10060708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus (S.) aureus is an important causative agent of wound infections with increasing incidence in the past decades. Specifically, the emergence of methicillin-resistant S. aureus (MRSA) causes serious problems, especially in nosocomial infections. Therefore, there is an urgent need to develop of alternative or supportive antimicrobial therapeutic modalities to meet these challenges. Purified compounds from hops have previously shown promising antimicrobial effects against MRSA isolates in vitro. In this study, purified beta-acids from hops were tested for their potential antimicrobial and healing properties using a porcine model of wounds infected by MRSA. The results show highly significant antimicrobial effects of the active substance in both the powder and Ambiderman-based application forms compared to both no-treatment control and treatment with Framycoin. Moreover, the macroscopic evaluation of the wounds during the treatment using the standardized Wound Healing Continuum indicated positive effects of the beta-acids on the overall wound healing. This is further supported by the microscopic data, which showed a clear improvement of the inflammatory parameters in the wounds treated by beta-acids. Thus, using the porcine model, we demonstrate significant therapeutic effects of hops compounds in the management of wounds infected by MRSA. Beta-acids from hops, therefore, represent a suitable candidate for the treatment of non-responsive nosocomial tissue infections by MRSA.
Collapse
|
7
|
Bioactive Compounds Obtained from Polish "Marynka" Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules 2021; 26:molecules26082366. [PMID: 33921703 PMCID: PMC8073632 DOI: 10.3390/molecules26082366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
Given the health-beneficial properties of compounds from hop, there is still a growing trend towards developing successful extraction methods with the highest yield and also receiving the products with high added value. The aim of this study was to develop efficient extraction method for isolation of bioactive compounds from the Polish "Marynka" hop variety. The modified two-step supercritical fluid extraction allowed to obtain two hop samples, namely crude extract (E1), composed of α-acids, β-acids, and terpene derivatives, as well as pure xanthohumol with higher yield than that of other available methods. The post-extraction residues (R1) were re-extracted in order to obtain extract E2 enriched in xanthohumol. Then, both samples were subjected to investigation of their antibacterial (anti-acne, anti-caries), cytotoxic, and anti-proliferative activities in vitro. It was demonstrated that extract (E1) possessed more beneficial biological properties than xanthohumol. It exhibited not only better antibacterial activity against Gram-positive bacteria strains (MIC, MBC) but also possessed a higher synergistic effect with commercial antibiotics when compared to xanthohumol. Moreover, cell culture experiments revealed that crude extract neither inhibited viability nor divisions of normal skin fibroblasts as strongly as xanthohumol. In turn, calculated selectivity indexes showed that the crude extract had from slightly to significantly better selective anti-proliferative activity towards cancer cells in comparison with xanthohumol.
Collapse
|
8
|
Sleha R, Radochova V, Mikyska A, Houska M, Bolehovska R, Janovska S, Pejchal J, Muckova L, Cermak P, Bostik P. Strong Antimicrobial Effects of Xanthohumol and Beta-Acids from Hops against Clostridioides difficile Infection In Vivo. Antibiotics (Basel) 2021; 10:antibiotics10040392. [PMID: 33917416 PMCID: PMC8067520 DOI: 10.3390/antibiotics10040392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridioides (C.) difficile is an important causative pathogen of nosocomial gastrointestinal infections in humans with an increasing incidence, morbidity, and mortality. The available treatment options against this pathogen are limited. The standard antibiotics are expensive, can promote emerging resistance, and the recurrence rate of the infection is high. Therefore, there is an urgent need for new approaches to meet these challenges. One of the possible treatment alternatives is to use compounds available in commonly used plants. In this study, purified extracts isolated from hops-alpha and beta acids and xanthohumol-were tested in vivo for their inhibitory effect against C. difficile. A rat model of the peroral intestinal infection by C. difficile has been developed. The results show that both xanthohumol and beta acids from hops exert a notable antimicrobial effect in the C. difficile infection. The xanthohumol application showed the most pronounced antimicrobial effect together with an improvement of local inflammatory signs in the large intestine. Thus, the hops compounds represent promising antimicrobial agents for the treatment of intestinal infections caused by C. difficile.
Collapse
Affiliation(s)
- Radek Sleha
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (R.S.); (V.R.); (S.J.)
| | - Vera Radochova
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (R.S.); (V.R.); (S.J.)
| | - Alexander Mikyska
- Research Institute of Brewing and Malting, 110 00 Prague, Czech Republic;
| | - Milan Houska
- Food Research Institute, 110 00 Prague, Czech Republic;
| | - Radka Bolehovska
- Institute of Clinical Microbiology, University Hospital, 500 03 Hradec Kralove, Czech Republic;
| | - Sylva Janovska
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (R.S.); (V.R.); (S.J.)
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (J.P.); (L.M.)
| | - Lubica Muckova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (J.P.); (L.M.)
| | - Pavel Cermak
- Thomayer Hospital, 110 00 Prague, Czech Republic;
| | - Pavel Bostik
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, 500 03 Hradec Kralove, Czech Republic; (R.S.); (V.R.); (S.J.)
- Institute of Clinical Microbiology, University Hospital, 500 03 Hradec Kralove, Czech Republic;
- Department of Clinical Microbiology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic
- Correspondence:
| |
Collapse
|
9
|
Mechanistic Study of Synergistic Antimicrobial Effects between Poly (3-hydroxybutyrate) Oligomer and Polyethylene Glycol. Polymers (Basel) 2020; 12:polym12112735. [PMID: 33218029 PMCID: PMC7698724 DOI: 10.3390/polym12112735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Extended from our previous finding that poly (3-hydroxybutyrate) (PHB) oligomer is an effective antimicrobial agent against gram-positive bacteria, gram-negative bacteria, fungi and multi-drug resistant bacteria, this work investigates the effect of polyethylene glycol (PEG) on the antimicrobial effect of PHB oligomer. To investigate and explain this promoting phenomenon, three hypothetic mechanisms were proposed, that is, generation of new antimicrobial components, degradation of PHB macromolecules and dissolution/dispersion of PHB oligomer by PEG. With a series of systematic experiments and characterizations of high-performance liquid chromatography-mass spectrometry (HPLC-MS), it was deducted that PEG promotes the antimicrobial effect of PHB oligomer synergistically through dissolution/dispersion, owing to its amphipathy, which improves the hydrophilicity of PHB oligomer.
Collapse
|
10
|
Rutamarin: Efficient Liquid-Liquid Chromatographic Isolation from Ruta graveolens L. and Evaluation of Its In Vitro and In Silico MAO-B Inhibitory Activity. Molecules 2020; 25:molecules25112678. [PMID: 32527030 PMCID: PMC7321355 DOI: 10.3390/molecules25112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring coumarins are a group of compounds with many documented central nervous system (CNS) activities. However, dihydrofuranocoumarins have been infrequently investigated for their bioactivities at CNS level. Within the frame of this study, an efficient liquid–liquid chromatography method was developed to rapidly isolate rutamarin from Ruta graveolens L. (Rutaceae) dichloromethane extract (DCM). The crude DCM (9.78 mg/mL) and rutamarin (6.17 µM) were found to be effective inhibitors of human monoamine oxidase B (hMAO-B) with inhibition percentages of 89.98% and 95.26%, respectively. The inhibitory activity against human monoamine oxidase A (hMAO-A) for the DCM extract was almost the same (88.22%). However, for rutamarin, it significantly dropped to 25.15%. To examine the molecular interaction of rutamarin with hMAO- B, an in silico evaluation was implemented. A docking study was performed for the two enantiomers (R)-rutamarin and (S)-rutamarin. The (S)-rutamarin was found to bind stronger to the hMAO-B binging cavity.
Collapse
|
11
|
Roehrer S, Stork V, Ludwig C, Minceva M, Behr J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS One 2019; 14:e0213469. [PMID: 30875365 PMCID: PMC6420031 DOI: 10.1371/journal.pone.0213469] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Minor prenylated hop compounds have been attracting increasing attention due to their promising anticarcinogenic properties. Even after intensive purification from natural raw extracts, allocating certain activities to single compounds or complex interactions of the main compound with remaining impurities in very low concentration is difficult. In this study, dose-dependent antiproliferative and cytotoxic effects of the promising xanthohumol (XN) analogue xanthohumol C (XNC) were evaluated and compared to XN and a XN-enriched hop extract (XF). It was demonstrated that the cell growth inhibition of human breast cancer cell line (MCF-7) significantly increases after being treated with XNC compared to XN and XF. Based on label-free data-dependent acquisition proteomics, physiological influences on the proteome of MCF-7 cells were analyzed. Different modes of action between XNC and XN treated MCF-7 cells could be postulated. XNC causes ER stress and seems to be involved in cell-cell adhesion, whereas XN influences cell cycles and DNA replication as well as type I interferon signaling pathway. The results demonstrate the utility of using quantitative proteomics for bioactivity screenings of minor hop compounds and underscore the importance of isolating highly pure compounds into their distinct forms to analyze their different and possibly synergistic activities and modes of action.
Collapse
Affiliation(s)
- Simon Roehrer
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Verena Stork
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mirjana Minceva
- Biothermodynamics, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|