1
|
Ye Z, Yu Z, Zeng Y, Deng P, Peng B, Kuang Y, Wu K, Qiao D, Jiang F. Superior flame retardancy, thermal insulation, and mechanical properties of konjac glucomannan/sodium alginate biomass aerogel modified by supramolecular assembled phytic acid-melamine nanosheet. Int J Biol Macromol 2024; 282:137026. [PMID: 39486713 DOI: 10.1016/j.ijbiomac.2024.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
The development of biomass-based eco-friendly aerogel with superior flame retardancy, thermal insulation, and mechanical properties at the same time has long been a tough challenge. In this study, the polysaccharide-based aerogels composed of konjac glucomannan, sodium alginate, and supramolecular assembled melamine phytate (MPA) nanosheets were successfully fabricated through the freeze-drying method. Owing to the excellent charcoal-forming and non-combustible gas-releasing effect of MPA nanosheets, the thermal stability and flame retardancy properties of the aerogels were both significantly enhanced, with the highest limiting oxygen index value reaching 42.4 %. Meanwhile, appropriate MPA embedded in the pore walls greatly enhanced the compressive strength of the aerogel (364.9 kPa) and can withstand >7100 times its weight without visual deformation. Moreover, the thermal insulation effect was quite attractive with a thermal conductivity of 0.0385-0.0420 W/mK. The present work provided an environmentally friendly method for the fabrication of multifunctional sustainable fire-resistant aerogels, which showed promising prospects in the future.
Collapse
Affiliation(s)
- Zijian Ye
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zihan Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yang Zeng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Pengpeng Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Bo Peng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ying Kuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fatang Jiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
2
|
Pamık DT, Bozkurt SS, Büyükkamacı N. An ultrasound assisted dispersive micro solid-phase extraction and a composite ionic liquid-metal organic framework for sixteen polycyclic aromatic hydrocarbons analysis in fruit juice and environmental water samples. J Chromatogr A 2024; 1733:465259. [PMID: 39178659 DOI: 10.1016/j.chroma.2024.465259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
Aluminum-based metal organic framework composite containing ionic liquid was prepared and used as sorbent for extraction of sixteen polycyclic aromatic hydrocarbons in list of priority pollutants of United States Environmental Protection Agency before their analysis by gas chromatography/mass spectrometry. The dispersive micro solid-phase extraction method, known as a simple and fast method, was preferred as the extraction method. The optimized parameter conditions were 5 mL of sample solution, 10 min sonication by ultrasonic bath, 30 mg of sorbent, 30 °C extraction temperature, 0.1 mL of hexane as elution solvent with 5 min elution time. The suggested method presented that limit of detection and limit of quantification were in the range of 0.01-0.10 μg l-1, and 0.04-0.33 μg L-1, respectively. The intra-day and inter-day repeatability were within the ranges of 1.18-4.88 % and 1.02-5.06 %, respectively. The recoveries for polycyclic aromatic hydrocarbons in peach juice, cherry juice, tap water and rain water samples were obtained in the range of 84.9-99.9 % for spiked 5, 50 and 100 μg l-1 standard polycyclic aromatic hydrocarbons solution.
Collapse
Affiliation(s)
- Duygu Totur Pamık
- The Graduate School of Natural and Applied Science, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey
| | - Serap Seyhan Bozkurt
- Faculty of Science, Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey.
| | - Nurdan Büyükkamacı
- Engineering Faculty, Department of Environmental Engineering, Dokuz Eylul University, Tınaztepe Campus, Izmir 35390, Turkey
| |
Collapse
|
3
|
Chen L, Zhang Y, Zhang YX, Wang WL, Sun DM, Li PY, Feng XS, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal 2024; 14:100899. [PMID: 38634061 PMCID: PMC11022103 DOI: 10.1016/j.jpha.2023.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (μ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Peng-Yun Li
- Institute of Pharmacology and Toxicology Institution, National Engineering Research Center for Strategic Drugs, Beijing, 100850, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
4
|
Rezaei H, Matin AA, Mohammadnejad M. Cold atmospheric plasma treated 3D printed polylactic acid film; application in thin film solid phase microextraction of anticancer drugs. Talanta 2024; 266:125064. [PMID: 37572475 DOI: 10.1016/j.talanta.2023.125064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Tyrosine Kinase Inhibitors (TKIs) represent a pharmacological category of targeted therapeutics deployed for the treatment of malignant pathologies. Considering the side effects of this class of drugs for humans, therapeutic drug monitoring (TDM) becomes important. Here, a novel and specific methodology is introduced for the quantification of two TKIs (dasatinib and erlotinib) in human plasma samples. Furthermore, this study investigates the successful application of 3D printer technology in analytical sample preparation methods. Employing a fused deposition modeling (FDM) 3D printer and polylactic acid (PLA) filament, adsorbent films were designed and produced to be utilized in thin film microextraction. The 3D printed polylactic acid film surface was modified using cold atmospheric plasma (CAP) as a fast, clean and dry surface modification method with low consumption of chemicals and energy. Subsequently, FESEM, AFM, ATR-FTIR, and WCA analysis studies were employed to effectively assess the efficacy of the plasma surface modification method for the 3D printed films. After the optimization of the plasma modification and extraction methods, human plasma samples were studied for the effectiveness of the aforementioned approach. So, the selected 3D printed films with excellent microextraction efficiency have been found to be effective in sample preparation of biological samples. The linear dynamic range (LDR), limit of detection (LOD) and limit of quantification (LOQ) were obtained 0.10-20 μgL-1, 0.03 μgL-1and 0.1 μgL-1 for dasatinib and 1.0-500 μgL-1, 0.3 μgL-1, and 1 μgL-1 for erlotinib. The results obtained indicate that the developed method proves to be successful in the effective separation of anticancer drugs.
Collapse
Affiliation(s)
- Hadiseh Rezaei
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amir Abbas Matin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Mohsen Mohammadnejad
- Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
5
|
Abdi K, Ezoddin M, Adlnasab L, Kabiri BA, Karimi MA, Behnamipour S, Alimoradi H. Effervescent tablet-assisted deep eutectic solvent based on magnetic nanofluid for liquid phase microextraction of tyrosine kinase inhibitors in plasma samples by high-performance liquid chromatography. Pharmacol Rep 2023; 75:1265-1275. [PMID: 37717246 DOI: 10.1007/s43440-023-00524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are efficient anti-cancer drugs. The analysis of TKIs in the treatment of cancer is important to achieve the highest anti-cancer effects with minimal toxicities. Herein, we report an efficient effervescent tablet-assisted deep eutectic solvent based on nanofluid (ETA-DES-NF) combined with HPLC-UV for the determination of three anti-cancer drugs (erlotinib, imatinib, and nilotinib) in human plasma samples. METHODS In this method, a magnetic nanofluid composed of deep eutectic solvent (DES) and Fe3O4@SiO2 nanoparticles was used as an extraction solvent. The deep eutectic solvent acted as a carrier and stabilizer for Fe3O4@SiO2 nanoparticles. A tablet was used in the nanofluid for dispersion. The effervescent tablet was implemented to generate in situ CO2 and provide the effective dispersion of the sorbent into the sample solution for diminishing the extraction time and improving the extraction efficiency. Moreover, the magnetic nanofluid enhanced phase separation efficiency without centrifugation to collect the organic solvent. RESULTS The synthesized nanofluid was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). The impact of main parameters, including the type and volume of DES, the composition of the tablet, the composition of the nanofluid and the composition of eluent, were optimized. According to the optimized conditions, the limits of detection (LODs) and the limits of quantitation (LOQs) were from 0.5-0.8 to 1.5-2.4 μg L-1 for imatinib, erlotinib, and nilotinib, respectively. The intra-day and inter-day relative standard deviations (RSD% n = 5) were determined to be 3.1-5% and 6.4-7.5%, respectively. CONCLUSIONS The developed method displayed high sensitivity, low consumption of solvent, low cost, simplicity, high recoveries, short extraction time, and good repeatability for determination of three anti-cancer drugs in human plasma samples.
Collapse
Affiliation(s)
- Khosrou Abdi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ezoddin
- Department of Chemistry, Payame Noor University(PNU), P.O. BOX, Tehran, 19395-4697, Iran.
| | - Laleh Adlnasab
- Chemistry Research Group, Chemistry, and Petrochemistry Research Center, Standard Research Institute, P.O. Box, Karaj, 31745-139, Iran
| | - Bahar Aziz Kabiri
- Department of Chemistry, Payame Noor University(PNU), P.O. BOX, Tehran, 19395-4697, Iran
| | - Mohammad Ali Karimi
- Department of Chemistry, Payame Noor University(PNU), P.O. BOX, Tehran, 19395-4697, Iran
| | - Somaye Behnamipour
- Research Center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
6
|
Khodayari P, Jalilian N, Ebrahimzadeh H, Amini S. Trace-level monitoring of anti-cancer drug residues in wastewater and biological samples by thin-film solid-phase micro-extraction using electrospun polyfam/Co-MOF-74 composite nanofibers prior to liquid chromatography analysis. J Chromatogr A 2021; 1655:462484. [PMID: 34487879 DOI: 10.1016/j.chroma.2021.462484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Sample preparation methods with high accuracy and matrix resistance will benefit the quick analysis of desired analytes in an intricate matrix, such as the monitoring of drug samples in biofluids. Herein, an electrospun composite, consisting of polyfam and a Co-metal organic framework- 74, was developed as a novel sorbent for the high-throughput solid-phase micro-extraction of certain anti-cancer drugs (sorafenib, dasatinib, and erlotinib hydrochloride) from wastewater and biological samples before high-performance liquid chromatography- ultraviolet analysis (HPLC-UV). The synthesis of the resulting composite nanofibers was confirmed using the techniques of Fourier transform-infrared spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (XRD). FESEM images illustrated irregular and bead-free nanofibers with a diameter range of 126.9-269.6 nm. Thanks to the incorporation of Co-MOF-74 into the polyfam network, the electrospun nanofibers displayed a large surface area, high porosity, and significant extraction efficiency toward target analytes. Under optimal experimental conditions, the linearity was achieved in the range of 0.1-1500.0 µg L-1 for sorafenib and 0.5-1500.0 µg L-1 for dasatinib and erlotinib hydrochloride, with a coefficient of determination of ≥0.9996. The detection limits (LODs) were calculated within the range of 0.03-0.20 µg L-1. The relative standard deviation values (RSDs %) were in the range of 3.1%-8.6% (intra-day, n = 6) and 7.0%-10.3% (inter-day, n=3) in the span of three days. Ultimately, the application of the developed method was appraised for the quantification of trace amounts of the intended analytes in various spiked samples.
Collapse
Affiliation(s)
- Parisa Khodayari
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Jajuli MN, Herzog G, Hébrant M, Poh NE, Rahim AA, Saad B, Hussin MH. Graphene and zeolite as adsorbents in bar-micro-solid phase extraction of pharmaceutical compounds of diverse polarities. RSC Adv 2021; 11:16297-16306. [PMID: 35479128 PMCID: PMC9031021 DOI: 10.1039/d1ra01569a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
A bar micro-solid phase (bar μ-SPE) extraction method using either graphene or zeolite or their mixtures as an adsorbent, coupled with high-performance liquid chromatography (using a C1 column) was developed for the simultaneous determination of pharmaceutical compounds (metformin (MET), buformin (BUF), phenformin (PHEN) and propranolol (PROP)) of diverse polarity (log P from -1.82 to 3.10). Parameters influencing the extraction, such as conditioning solvents, pH of the sample, sample volume, amount of adsorbent, stirring rate, time of extraction, type and volume of desorption solvent and time of desorption were investigated. Under the optimized conditions, the extraction method using graphene (extraction efficiency, % EE, ∼6-15%) resulted in the least amount of extracted drugs. However, the use of zeolite and zeolite/graphene mixtures improves the % EE significantly, i.e. 30% for PHEN and 42% for PROP using zeolite; 22% for MET and 18% for BUF using the adsorbent mixture. Under similar conditions, enrichment factors for these drugs range from 11-15. The validated method was performed for the determination of the drugs that were spiked to urine samples. Good recoveries ranging from 72.8 to 116% were achieved.
Collapse
Affiliation(s)
- Maizatul Najwa Jajuli
- Department of Chemistry, Faculty of Science and Mathematics, Sultan Idris Education University 35900 Tanjong Malim Perak Malaysia
- Université de Lorraine, CNRS, LCPME F-54000 Nancy France
| | | | - Marc Hébrant
- Université de Lorraine, CNRS, LCPME F-54000 Nancy France
| | - Ng Eng Poh
- School of Chemistry, Universiti Sains Malaysia 11800 Pulau Pinang Malaysia
| | - Afidah Abdul Rahim
- School of Chemistry, Universiti Sains Malaysia 11800 Pulau Pinang Malaysia
| | - Bahruddin Saad
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS 32610 Seri Iskandar Perak Darul Rizwan Malaysia
| | - M Hazwan Hussin
- School of Chemistry, Universiti Sains Malaysia 11800 Pulau Pinang Malaysia
| |
Collapse
|
8
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
9
|
Safari M, Yamini Y. Application of magnetic nanomaterials in magnetic in-tube solid-phase microextraction. Talanta 2021; 221:121648. [PMID: 33076165 DOI: 10.1016/j.talanta.2020.121648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Development of magnetic nanomaterials has greatly promoted the innovation of in-tube solid-phase microextraction. This review article gives an insight into recent advances in the modifications and applications of magnetic nanomaterials for in-tube solid-phase microextraction. Also, different magnetic nanomaterials which have recently been utilized as in-tube solid-phase microextraction sorbents are classified. This study shows that magnetic nanomaterials have gained significant attention owing to large specific surface area, selective absorption, and surface modification. Magnetic in-tube solid-phase microextraction has been applied for the analysis of food samples, biological, and environmental. However, for full development of magnetic in-tube SPME, effort is still needed to overcome limitations, such as mechanical stability, selectivity and low extraction efficiency. To achieve these objectives, research on magnetic in-tube SPME is mainly focused in the preparation of new extractive phases.
Collapse
Affiliation(s)
- Meysam Safari
- Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
10
|
Rahimpour E, Alvani-Alamdari S, Jouyban A. A Comprehensive Review on Developed Pharmaceutical Analysis Methods by Iranian Analysts in 2018. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This article summarizes the publishing activities including bioanalytical and pharmaceutical analyses researches carried out in Iran in 2018 in order to connect academic researchers to those in industry, medical care units and hospitals. A wide spectrum of analytical methods has been used to determine and/or evaluate drug levels in the biological samples, based on physical, chemical and biochemical principles. We have compiled a concise survey of the literature covering 125 reports and tabulated the relevant analytical parameters. Chromatographic and electrochemical methods were found to be the technique of choice for many workers and almost 83% studies were performed by using these methods. This is the first annual review of the literature searching in SCOPUS database for published bioanalytical and pharmaceutical analysis researches in Iran.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Alvani-Alamdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- harmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interface Sci 2019; 553:364-371. [DOI: 10.1016/j.jcis.2019.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023]
|
12
|
|
13
|
Pourbahman F, Zeeb M, Monzavi A, Homami SS. Simultaneous trace monitoring of prokinetic drugs in human plasma using magnetic dispersive micro-solid phase extraction based on a new graphene oxide/metal–organic framework-74/Fe3O4/polytyramine nanoporous composite in combination with HPLC. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00855-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Chu C, Wang S, Zhang H, Liu C, Jiang L, Tang Y, Yan J. A sensitive dispersive micro solid‐phase extraction coupled with high performance liquid chromatography for determination of three flavonoids in complex matrics by using crab shell as a sorbent. Electrophoresis 2019; 40:1298-1305. [DOI: 10.1002/elps.201900003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Chu Chu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Shan Wang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Huan Zhang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Caijing Liu
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Luyi Jiang
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Yiping Tang
- College of Material ScienceZhejiang University of Technology Hangzhou P. R. China
| | - Jizhong Yan
- College of Pharmaceutical ScienceZhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
15
|
Esmaeilzadeh M. Ultrasound-assisted dispersive magnetic solid phase extraction based on metal–organic framework/1-(2-pyridylazo)-2-naphthol modified magnetite nanoparticle composites for speciation analysis of inorganic tin. NEW J CHEM 2019. [DOI: 10.1039/c8nj06288a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel magnetic metal–organic framework (MMOF) consisting of MIL-101(Cr) and 1-(2-pyridylazo)-2-naphthol-modified magnetite nanoparticles was synthesized and utilized for the ultrasound-assisted magnetic solid phase extraction and speciation analysis of Sn(ii) and Sn(iv) at trace amounts.
Collapse
Affiliation(s)
- Majid Esmaeilzadeh
- Department of Physics
- Iran University of Science and Technology
- Tehran
- Iran
| |
Collapse
|
16
|
Alipanahpour Dil E, Asfaram A, Sadeghfar F. Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@Fe3O4-CNTs nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in the medical extract of plants, food, and water samples. Analyst 2019; 144:2684-2695. [DOI: 10.1039/c8an02484g] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO/ZnO@Fe3O4-CNTs-NC was synthesized and used as a sorbent in a MDMSPE method for the determination of chlorogenic acid in the medical extract of plants, food, and water samples.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | | |
Collapse
|