1
|
Haworth-Duff A, Smith BL, Sham TT, Boisdon C, Loughnane P, Burnley M, Hawcutt DB, Raval R, Maher S. Rapid differentiation of cystic fibrosis-related bacteria via reagentless atmospheric pressure photoionisation mass spectrometry. Sci Rep 2024; 14:17067. [PMID: 39048618 PMCID: PMC11269582 DOI: 10.1038/s41598-024-66851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Breath analysis is an area of significant interest in medical research as it allows for non-invasive sampling with exceptional potential for disease monitoring and diagnosis. Volatile organic compounds (VOCs) found in breath can offer critical insight into a person's lifestyle and/or disease/health state. To this end, the development of a rapid, sensitive, cost-effective and potentially portable method for the detection of key compounds in breath would mark a significant advancement. Herein, we have designed, built and tested a novel reagent-less atmospheric pressure photoionisation (APPI) source, coupled with mass spectrometry (MS), utilising a bespoke bias electrode within a custom 3D printed sampling chamber for direct analysis of VOCs. Optimal APPI-MS conditions were identified, including bias voltage, cone voltage and vaporisation temperature. Calibration curves were produced for ethanol, acetone, 2-butanone, ethyl acetate and eucalyptol, yielding R2 > 0.99 and limits of detection < 10 pg. As a pre-clinical proof of concept, this method was applied to bacterial headspace samples of Escherichia coli (EC), Pseudomonas aeruginosa (PSA) and Staphylococcus aureus (SA) collected in 1 L Tedlar bags. In particular, PSA and SA are commonly associated with lung infection in cystic fibrosis patients. The headspace samples were classified using principal component analysis with 86.9% of the total variance across the first three components and yielding 100% classification in a blind-sample study. All experiments conducted with the novel APPI arrangement were carried out directly in real-time with low-resolution MS, which opens up exciting possibilities in the future for on-site (e.g., in the clinic) analysis with a portable system.
Collapse
Affiliation(s)
- Adam Haworth-Duff
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Barry L Smith
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Tung-Ting Sham
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Cedric Boisdon
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Paul Loughnane
- Department of Biochemistry and Systems Biology, University of Liverpool, Liverpool, UK
| | - Mark Burnley
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
- NIHR Alder Hey Clinical Research Facility, Liverpool, UK
| | - Rasmita Raval
- Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
2
|
Vasseghian Y, Alimohamadi M, Dragoi EN, Sonne C. A global meta-analysis of phthalate esters in drinking water sources and associated health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166846. [PMID: 37673273 DOI: 10.1016/j.scitotenv.2023.166846] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Phthalate esters (PAEs) are known as esters of phthalic acid, which are commonly used as plasticizers in the plastic industry. Due to the lack of chemical bonding with the polymer matrix, these compounds are easily separated from plastic products and enter the environment. To investigate the growth of concentration of PAEs like DBP (Dibutyl phthalate), DEP (Diethyl phthalate), DMP (Dimethyl phthalate), DIBP (Diisobutyl phthalate), and TPMBP (tris(2-methylbutyl) phosphate) in different water sources, a study from January 01, 1976, to April 30, 2021, was implemented via a global systematic review plus meta-analysis in which, 109 articles comprising 4061 samples, 4 water types, and 27 countries were included. Between various types of water sources, river water and lake water were the most contaminated resources with PAEs. Among all studies of PAEs, DBP and DEP with the values >15,573 mg L-1 have the highest average concentration and TPMBP with the value 0.002885 mg L-1 has the lowest average concentration in water sources. The most contaminated water sources with PAEs were in Nigeria and the least contaminated was in China. Besides, Monte-Carlo simulation indicated that for DMP and DEP minimum values that are lower than the acceptable limit are generated. However, most of the population (>75 %) is at risk for both adults and child cases. For DIBP and DBP the situation is much worse, the simulations not providing at least one case where the R index is lower than the acceptable limit of 1E-06.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan
| | - Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron no 73, Iasi 700050, Romania
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Berna AZ, Merriman JA, Mellett L, Parchment DK, Caparon MG, Odom John AR. Volatile profiling distinguishes Streptococcus pyogenes from other respiratory streptococcal species. mSphere 2023; 8:e0019423. [PMID: 37791788 PMCID: PMC10597408 DOI: 10.1128/msphere.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/13/2023] [Indexed: 10/05/2023] Open
Abstract
Sore throat is one of the most common complaints encountered in the ambulatory clinical setting. Rapid, culture-independent diagnostic techniques that do not rely on pharyngeal swabs would be highly valuable as a point-of-care strategy to guide outpatient antibiotic treatment. Despite the promise of this approach, efforts to detect volatiles during oropharyngeal infection have yet been limited. In our research study, we sought to evaluate for specific bacterial volatile organic compounds (VOC) biomarkers in isolated cultures in vitro, in order to establish proof-of-concept prior to initial clinical studies of breath biomarkers. A particular challenge for the diagnosis of pharyngitis due to Streptococcus pyogenes is the likelihood that many metabolites may be shared by S. pyogenes and other related oropharyngeal colonizing bacterial species. Therefore, we evaluated whether sufficient metabolic differences are present, which distinguish the volatile metabolome of Group A streptococci from other streptococcal species that also colonize the respiratory mucosa, such as Streptococcus pneumoniae and Streptococcus intermedius. In this work, we identified 27 discriminatory VOCs (q-values < 0.05), composed of aldehydes, alcohols, nitrogen-containing compounds, hydrocarbons, ketones, aromatic compounds, esters, ethers, and carboxylic acid. From this group of volatiles, we identify candidate biomarkers that distinguish S. pyogenes from other species and establish highly produced VOCs that indicate the presence of S. pyogenes in vitro, supporting future breath-based diagnostic testing for streptococcal pharyngitis. IMPORTANCE Acute pharyngitis accounts for approximately 15 million ambulatory care visits in the United States. The most common and important bacterial cause of pharyngitis is Streptococcus pyogenesis, accounting for 15%-30% of pediatric pharyngitis. Distinguishing between bacterial and viral pharyngitis is key to management in US practice. The culture of a specimen obtained by a throat swab is the standard laboratory procedure for the microbiologic confirmation of pharyngitis; however, this method is time-consuming, which delays appropriate treatment. If left untreated, S. pyogenes pharyngitis may lead to local and distant complications. In this study, we characterized the volatile metabolomes of S. pyogenes and other related oropharyngeal colonizing bacterial species. We identify candidate biomarkers that distinguish S. pyogenes from other species and provide evidence to support future breath-based diagnostic testing for streptococcal pharyngitis.
Collapse
Affiliation(s)
- Amalia Z. Berna
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Joseph A. Merriman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Microbiome Therapies Initiative, Stanford University, Palo Alto, California, USA
| | - Leah Mellett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danealle K. Parchment
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Qin M, Qian Y, Huang L, Zhong C, Li M, Yu J, Chen H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front Pharmacol 2023; 14:1110900. [PMID: 36713836 PMCID: PMC9880169 DOI: 10.3389/fphar.2023.1110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Extraction electrospray ionization mass spectrometry (EESI-MS), due to the unique configuration of its ionization module, enables the effective ionization of trace molecules of interest in samples containing complex matrices with high sensitivity, high selectivity and high responding speed without requiring sample pretreatment, and allows high-energy molecular species to undergo specially designed reactions for advanced functionalization. The typical effects of operating conditions on the analytical performance of extraction electrospray ionization mass spectrometry for various pharmaceutical compounds, pharmaceutical preparations and herbal materials were systematically reviewed. The application prospect of extraction electrospray ionization in molecular functionalization for advanced drug discovery is also briefly introduced.
Collapse
Affiliation(s)
- Manman Qin
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Yuqing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Mingdong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Huanwen Chen
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Huanwen Chen,
| |
Collapse
|
5
|
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2022; 13:8. [PMID: 36676933 PMCID: PMC9866406 DOI: 10.3390/metabo13010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
An analysis of exhaled breath enables specialists to noninvasively monitor biochemical processes and to determine any pathological state in the human body. Breath analysis holds the greatest potential to remold and personalize diagnostics; however, it requires a multidisciplinary approach and collaboration of many specialists. Despite the fact that breath is considered to be a less complex matrix than blood, it is not commonly used as a diagnostic and prognostic tool for early detection of disordered conditions due to its problematic sampling, analysis, and storage. This review is intended to determine, standardize, and marshal experimental strategies for successful, reliable, and especially, reproducible breath analysis.
Collapse
Affiliation(s)
- Kinga Westphal
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Małgorzata Waszczuk-Jankowska
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Beata Graff
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| |
Collapse
|
6
|
Phong WN, Sung B, Cao Z, Gibberd MR, Dykes GA, Payne AD, Coorey R. Impact of different processing techniques on the key volatile profile, sensory, and consumer acceptance of black truffle (Tuber melanosporum Vittadini). J Food Sci 2022; 87:4174-4187. [PMID: 35975798 DOI: 10.1111/1750-3841.16275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
Fresh truffles which include black truffle (Tuber melanosporum Vittadini) deteriorate and lose aroma rapidly after harvest; therefore, postharvest processing via freeze-drying or encapsulation is an option to preserve truffle aroma for extended supply. However, the aroma profile that directly affects the truffle quality and consumer acceptance is influenced by processing and producers require processing options that balance processing feasibility with retention of a suitable aroma profile. This study aimed to determine the impact of freeze-drying and encapsulation on the profile of key volatiles, consumer discrimination, and overall sensory impression (aroma intensity, liking, and acceptability) of processed truffle products compared to the starting material (positive control). The study combined experimental-scale processing with GC-MS analysis and consumer sensory evaluation to compare and optimize postharvest processing options. Based on the results, some volatile changes were detected in the processed truffle products compared to the positive control which were aligned with the consumer discrimination (triangle test) and the aroma intensity score (consumer sensory test). Despite some chemical and sensory differences detected, the consumer panel did not have any preference for processed truffle products compared to the positive control. The overall finding indicates the potential value of processing truffles into a natural flavoring ingredient for food application via freeze-drying or encapsulation, which should be of great interest for the truffle and food industry. According to the correlation analysis, the consumer acceptance of a truffle product may be increased by retaining 1-octen-3-ol and methional, while reducing the amount of p-cresol in the product. PRACTICAL APPLICATION: The postharvest process of turning truffles into a food flavoring ingredient may cause undesirable volatile changes that would directly impact the aroma quality and consumer acceptance of the processed truffle products. Hence, the impacts of freeze-drying and encapsulation on the chemical and sensory profile of truffles were evaluated in this study. Overall, the results of the concurrent instrument and sensory analysis demonstrated that both freeze-drying and encapsulation are potential options for processing.
Collapse
Affiliation(s)
- Win Nee Phong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Billy Sung
- School of Management and Marketing, Curtin University, Bentley, Western Australia, Australia
| | - Zhanglong Cao
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
7
|
Jávor P, Rárosi F, Horváth T, Török L, Varga E, Hartmann P. Detection of exhaled methane levels for monitoring trauma-related haemorrhage following blunt trauma: study protocol for a prospective observational study. BMJ Open 2022; 12:e057872. [PMID: 35793921 PMCID: PMC9260765 DOI: 10.1136/bmjopen-2021-057872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Early recognition and effective treatment of internal bleeding impose a cardinal challenge for trauma teams. The reduction of the superior mesenteric artery (SMA) blood flow is among the first compensatory responses to blood loss, thus being a promising candidate as a diagnostic tool for occult haemorrhage. Unfortunately, methods for monitoring the SMA flow have not been elaborated to date. Nevertheless, animal experiments suggest that exhaled methane (CH4) levels correspond to the SMA perfusion. We hypothesise that real-time detection of CH4 concentrations in the exhaled air is an applicable technique for the early recognition of haemorrhage in severely injured patients. We also hypothesise that exhaled CH4 levels reflect the volume of blood loss more accurately than conventional markers of blood loss and shock such as shock index, haemoglobin, base deficit, lactate, end-tidal carbon dioxide and sublingual microcirculatory indices. METHODS AND ANALYSIS One hundred and eleven severely injured (Injury Severity Score ≥16), intubated, bleeding patients sustaining blunt trauma will be included in this prospective observational study. Blood loss will be detected with CT and estimated with CT-linked radiologic software. Exhaled CH4 concentrations will be monitored by attaching a near-infrared laser technique-based photoacoustic spectroscopy apparatus to the exhalation outlet of the ventilator on patient arrival. The primary outcome is the volume of blood loss. Need for massive transfusion and 24-hour mortality will constitute secondary outcomes. The relation of exhaled CH4 to study outcomes and its performance in predicting blood loss in comparison with conventional shock markers and microcirculatory indices will be tested. ETHICS AND DISSEMINATION Our protocol (ID: 5400/2021-SZTE) has been registered on ClinicalTrials.gov (NCT04987411) and complies with the Declaration of Helsinki and has been approved by the medical ethics committee at the University of Szeged (Ref.nr.:121/2021-SZTE RKEB). It is in data collection phase, theresults will be shared with the scientific community through publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04987411; ClinicalTrials.gov, registered on 27 July 2021.
Collapse
Affiliation(s)
- Péter Jávor
- Department of Traumatology, University of Szeged, Szeged, Hungary
| | - Ferenc Rárosi
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamara Horváth
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - László Török
- Department of Traumatology, University of Szeged, Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Szeged, Hungary
| | - Endre Varga
- Department of Traumatology, University of Szeged, Szeged, Hungary
| | - Petra Hartmann
- Department of Traumatology, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Sci Rep 2022; 12:5572. [PMID: 35368033 PMCID: PMC8976853 DOI: 10.1038/s41598-022-09597-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Mid-infrared (mid-IR) sensors consisting of silicon nitride (SiN) waveguides were designed and tested to detect volatile organic compounds (VOCs). SiN thin films, prepared by low-pressure chemical vapor deposition (LPCVD), have a broad mid-IR transparent region and a lower refractive index (nSiN = 2.0) than conventional materials such as Si (nSi = 3.4), which leads to a stronger evanescent wave and therefore higher sensitivity, as confirmed by a finite-difference eigenmode (FDE) calculation. Further, in-situ monitoring of three VOCs (acetone, ethanol, and isoprene) was experimentally demonstrated through characteristic absorption measurements at wavelengths λ = 3.0–3.6 μm. The SiN waveguide showed a five-fold sensitivity improvement over the Si waveguide due to its stronger evanescent field. To our knowledge, this is the first time SiN waveguides are used to perform on-chip mid-IR spectral measurements for VOC detection. Thus, the developed waveguide sensor has the potential to be used as a compact device module capable of monitoring multiple gaseous analytes for health, agricultural and environmental applications.
Collapse
|
9
|
Bell L, Wallen M, Talpey S, Myers M, O'Brien B. Can exhaled volatile organic compounds differentiate high and low responders to resistance exercise? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Vasseghian Y, Alimohamadi M, Khataee A, Dragoi EN. A global systematic review on the concentration of organophosphate esters in water resources: Meta-analysis, and probabilistic risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150876. [PMID: 34627903 DOI: 10.1016/j.scitotenv.2021.150876] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate esters (OPEs) are used as additives in various industries. They do not chemically bond with the polymeric structure of materials, so they can stay for a long time and have a very adverse effect on the environment. To analyze the development of the prevalence and concentration of OPEs such as TCEP, TCPP, TDCP, TnBP, TPHP, TBOEP, TEHP, TMP, TCIPP, TDCIPP, TMPP, and TDBPP in water resources, a search between January 01, 2000, to April 08, 2021, was followed by a systematic review and meta-analysis. Among of the 888 articles scanned in the identity step, 58 articles containing 2676 samples, 10 countries, and 4 water types were included in the meta-analysis study. Among all studied OPEs, the concentration of TcrP, TCPP, TDCPP, and TnBP were at the top in water resources, with values >715 μg L-1 and lowest average concentrations were obtained for TDBPP and TpeP with values <0.0004 μg L-1. The most polluted area in terms of the concentration of OPEs in water resources was China. Besides, data analysis showed that there only was carcinogenic risk for China. A Monte-Carlo simulation indicated that although these obtained averages are in the same order of magnitude as the acceptable limit, for both adults and children, 95% of the population is at risk.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey.
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania.
| |
Collapse
|
11
|
Choueiry F, Zhu J. Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) fingerprinting enabled treatment monitoring of pulmonary carcinoma cells in real time. Anal Chim Acta 2022; 1189:339230. [PMID: 34815037 PMCID: PMC8613447 DOI: 10.1016/j.aca.2021.339230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer is one of the leading causes of cancer related deaths in the United States. A novel volatile analysis platform is needed to complement current diagnostic techniques and better elucidate chemical signatures of lung cancer and subsequent treatments. A systems biology bottom-up approach using cell culture volatilomics was employed to identify pathological volatile fingerprints of lung cancer in real time. An advanced secondary electrospray ionization (SESI) source, named SuperSESI was used in this study and directly attached to a Thermo Q-Exactive high-resolution mass spectrometer (HRMS). We performed a series of experiments to determine if our optimized SESI-HRMS platform can distinguish between cancer types by sampling their in vitro volatilome profiles. We detected 60 significant volatile organic compound (VOC) features in positive mode that were deemed of cancer cell origin. The cell derived features were used for subsequent analyses to distinguish between our two studied lung cancer types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Partial least squares-discriminant analysis (PLS-DA) model revealed a good separation of the two cancer types, suggesting unique chemical composition of their headspace profiles. A receiver operating characteristic (ROC) curve using 10 prominent features was used to predict disease type, with an area under the curve (AUC) of 0.811. Cultures were also treated with cisplatin to determine the feasibility of classifying drug treatment from expelled gases. A PLS-DA model revealed independent clustering based on their headspace profiles. An ROC curve using the top features driving separation of PLS-DA model suggested good accuracy with an AUC of 1. It is thus possible to benefit from the advantages of this platform to distinguish the unique volatile fingerprints of cancers to uncover potential biomarkers for cancer type differentiation and treatment monitoring.
Collapse
Affiliation(s)
- Fouad Choueiry
- Department of Human Sciences, The Ohio State University; Columbus, OH 43210
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University; Columbus, OH 43210, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
Karunagaran M, Ramani P, Gheena S, Abilasha R, Hannah R. Volatile Organic Compounds in Human Breath. Indian J Dent Res 2022; 33:100-104. [PMID: 35946254 DOI: 10.4103/ijdr.ijdr_493_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A comprehensive analysis of volatile organic compounds (VOCs) from the exhaled breath sample is termed as breathomics. Breath samples are a complex mixture composed of a multitude of VOCs and other molecules. The analysis of total VOCs in exhaled breath provides a promising tool for the diagnosis of many diseases because it enables the observation of biochemical processes in the body in a non-invasive way. VOCs are produced in various physiological and pathophysiological conditions thus making it a potential biomarker for several diseases.
Collapse
Affiliation(s)
- Monika Karunagaran
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - S Gheena
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - R Abilasha
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| | - R Hannah
- Department of Oral Pathology and Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
13
|
Gouzi F, Ayache D, Hédon C, Molinari N, Vicet A. Breath acetone concentration: too heterogeneous to constitute a diagnosis or prognosis biomarker in heart failure? A systematic review and meta-analysis. J Breath Res 2021; 16. [PMID: 34727537 DOI: 10.1088/1752-7163/ac356d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Introduction. Exhaled breath acetone (ExA) has been investigated as a biomarker for heart failure (HF). Yet, barriers to its use in the clinical field have not been identified. The aim of this systematic review and meta-analysis was to assess the ExA heterogeneity and factors of variability in healthy controls (HC), to identify its relations with HF diagnosis and prognostic factors and to assess its diagnosis and prognosis accuracy in HF patients.Methods. A systematic search was conducted in PUBMED and Web of Science database. All studies with HC and HF patients with a measured ExA were included and studies providing ExA's diagnosis and prognosis accuracy were identified.Results. Out of 971 identified studies, 18 studies involving 833 HC and 1009 HF patients were included in the meta-analysis. In HC, ExA showed an important heterogeneity (I2= 99%). Variability factors were fasting state, sampling type and analytical method. The mean ExA was 1.89 times higher in HF patients vs. HC (782 [531-1032] vs. 413 [347-478] ppbv;p< 0.001). One study showed excellent diagnosis accuracy, and one showed a good prognosis value. ExA correlated with New York Heart Association (NYHA) dyspnea (p< 0.001) and plasma brain natriuretic peptide (p< 0.001). Studies showed a poor definition and reporting of included subjects.Discussion. Despite the between-study heterogeneity in HC, the evidence of an excellent diagnosis and prognosis value of ExA in HF from single studies can be extended to clinical populations worldwide. Factors of variability (ExA procedure and breath sampling) could further improve the diagnosis and prognosis values of this biomarker in HF patients.
Collapse
Affiliation(s)
- Fares Gouzi
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU, Montpellier, France
| | - Diba Ayache
- IES, Montpellier University, CNRS, F-34000 Montpellier, France
| | - Christophe Hédon
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU, Montpellier, France
| | - Nicolas Molinari
- IDESP, INSERM, Montpellier University, Montpellier University Hospital, Montpellier, France
| | - Aurore Vicet
- IES, Montpellier University, CNRS, F-34000 Montpellier, France
| |
Collapse
|
14
|
Yin J, Wu M, Lin R, Li X, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Surface Functionalization Utilizing Mesoporous Silica Nanoparticles for Enhanced Evanescent-Field Mid-Infrared Waveguide Gas Sensing. COATINGS 2021. [DOI: 10.3390/coatings11020118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This work focuses on the development of nanoparticle-based layer-by-layer (LbL) coatings for enhancing the detection sensitivity and selectivity of volatile organic compounds (VOCs) using on-chip mid-infrared (MIR) waveguides (WGs). First, we demonstrate construction of conformal coatings of polymer/mesoporous silica nanoparticles (MSNs) on the surface of Si-based WGs using the LbL technique and evaluate the coating deposition conditions, such as pH and substrate withdrawal speed, on the thickness and homogeneity of the assemblies. We then use the modified WGs to achieve enhanced sensitivity and selectivity of polar organic compounds, such as ethanol, versus non-polar ones, such as methane, in the MIR region. In addition, using density functional theory calculations, we show that such an improvement in sensing performance is achieved due to preferential adsorption of ethanol molecules within MSNs in the vicinity of the WG evanescent field.
Collapse
|
16
|
Poldy J. Volatile Cues Influence Host-Choice in Arthropod Pests. Animals (Basel) 2020; 10:E1984. [PMID: 33126768 PMCID: PMC7692281 DOI: 10.3390/ani10111984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts' 'volatilome'. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic. Despite several decades since the identification of a small number of critical volatiles underpinning specific host-vector relationships, synthetic chemicals or mixtures still largely fail to reproduce the attractiveness of natural hosts to their disease vectors. This review documents allelochemicals from non-human terrestrial animals and considers where challenges in collection and analysis have left shortfalls in animal volatilome research. A total of 1287 volatile organic compounds were identified from 141 species. Despite comparable diversity of entities in each compound class, no specific chemical is ubiquitous in all species reviewed, and over half are reported as unique to a single species. This review provides a rationale for future enquiries by highlighting research gaps, such as disregard for the contribution of breath volatiles to the whole animal volatilome and evaluating the role of allomones as vector deterrents. New opportunities to improve vector surveillance and disrupt disease transmission may be unveiled by understanding the host-associated stimuli that drive vector-host interactions.
Collapse
Affiliation(s)
- Jacqueline Poldy
- Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Shiba S, Yamada K, Matsuguchi M. Humidity-Resistive Optical NO Gas Sensor Devices Based on Cobalt Tetraphenylporphyrin Dispersed in Hydrophobic Polymer Matrix. SENSORS 2020; 20:s20051295. [PMID: 32120957 PMCID: PMC7085509 DOI: 10.3390/s20051295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
We report on an optical nitrogen oxide (NO) gas sensor device using cobalt tetraphenylporphyrin (CoTPP) dispersed in three kinds of hydrophobic polymer film matrix (polystyrene (PSt), ethylcellulose (EC), and polycyclohexyl methacrylate (PCHMA)) to improve humidity resistance. Our approach is very effective because it allows us to achieve not only high humidity resistance, but also a more than sixfold increase in sensitivity compared with CoTPP film due to the high dispersion of CoTPP in the polymer film. The limit of detection was calculated as 33 ppb for the CoTPP-dispersed EC film, which is lower than that of CoTPP film (92 ppb).
Collapse
|
18
|
Peak alignment of gas chromatography–mass spectrometry data with deep learning. J Chromatogr A 2019; 1604:460476. [DOI: 10.1016/j.chroma.2019.460476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022]
|