1
|
Çambay Kuban F, Koçer İ, Kip Ç, Çelik E, Tuncel A. Ni(II) functionalized polyhedral oligomeric silsesquioxane based capillary monolith for purification of histidine-tagged proteins by immobilized metal affinity micro-chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1225:123759. [PMID: 37216763 DOI: 10.1016/j.jchromb.2023.123759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/13/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
A new capillary monolithic stationary phase was synthesized for the purification of histidine tagged proteins by immobilized metal affinity micro-chromatography (μ-IMAC). For this purpose, mercaptosuccinic acid (MSA) linked-polyhedral oligomeric silsesquioxane [MSA@poly(POSS-MA)] monolith 300 μm in diameter was obtained by thiol-methacrylate polymerization using methacryl substituted-polyhedral oligomeric silsesquioxane (POSS-MA) and MSA as the thiol functionalized agent in a fused silica capillary tubing. Ni(II) cations were immobilized onto the porous monolith via metal-chelate complex formation with double carboxyl functionality of bound MSA segments. μ-IMAC separations aiming the purification of histidine tagged-green fluorescent protein (His-GFP) from Escherichia coli extract were carried out on Ni(II)@MSA functionalized-poly(POSS-MA) [Ni(II)@MSA@poly(POSS-MA)] capillary monolith. His-GFP was succesfully isolated by μ-IMAC on Ni(II)@MSA@poly(POSS-MA) capillary monolith with the isolation yield of 85 % and the purity of 92 % from E. coli extract. Higher His-GFP isolation yields were obtained with lower His-GFP feed concentrations and lower feed flow rates. The monolith was used for consecutive His-GFP purifications with a tolerable decrease in equilibrium His-GFP adsorption over five runs.
Collapse
Affiliation(s)
- Fatma Çambay Kuban
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey
| | - İlkay Koçer
- Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Çiğdem Kip
- Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Eda Çelik
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, Ankara, Turkey
| | - Ali Tuncel
- Hacettepe University, Graduate School of Science and Engineering, Division of Bioengineering, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, Ankara, Turkey.
| |
Collapse
|
2
|
Zheng H, Wang C, Pavase TR, Xue C. Fabrication of copolymer brushes grafted superporous agarose gels: Towards the ultimate ideal particles for efficient affinity chromatography. Colloids Surf B Biointerfaces 2022; 217:112705. [PMID: 35863235 DOI: 10.1016/j.colsurfb.2022.112705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
A composite immobilized-metal affinity agarose particle was designed for the selective separation and purification of histidine-tagged proteins from complicated biological samples. The composite particle was constructed using superporous agarose particles as supporting matrix, flexible copolymer brushes as scaffolds to render higher ligand densities, and Ni2+-chelated iminodiacetic acids as recognition elements. Superporous agarose composite particles endow high permeability and interfering substance tolerance. The copolymer brush was prepared by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by iminodiacetic acids and Ni2+ ions. The physical and chemical properities of the composite particle were thoroughly investigated. The composite particles were shown to be able to selectively separate histidine-tagged recombinant proteins in the presence of high quantities of interfering chemicals in a model protein-binding experiment. By altering the temperature, the protein binding of the composite particles can be modulated. The superporous agarose particles supported polymer brush enables fast and efficient separation and purification of target proteins with high permeability, low backpressure, and high interfering matrix tolerance, which pave the path for bioseparation through designing and fabrication of novel agarose particles-based functional materials.
Collapse
Affiliation(s)
- Hongwei Zheng
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tushar Ramesh Pavase
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science & Engineering, Ocean University of China, Qingdao 266003, China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Billotto LS, Marcus RK. Comparative Analysis of Trilobal Capillary‐Channeled Polymer Fiber Columns with Superficially Porous and Monolithic Phases Towards Reversed‐Phase Protein Separations. J Sep Sci 2022; 45:3811-3826. [DOI: 10.1002/jssc.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Lacey S. Billotto
- Department of Chemistry Biosystems Research Complex Clemson University
| | - R. Kenneth Marcus
- Department of Chemistry Biosystems Research Complex Clemson University
| |
Collapse
|
4
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
5
|
Winderl J, Bürkle S, Hubbuch J. High throughput screening of fiber-based adsorbents for material and process development. J Chromatogr A 2021; 1653:462387. [PMID: 34375899 DOI: 10.1016/j.chroma.2021.462387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
There has been a growing interest in fibers and fiber-based adsorbents as alternative adsorbents for preparative chromatography. While the benefits of fiber-based adsorbents in terms of productivity have been highlighted in several recent studies, microscale tools that enable a fast characterization of these novel adsorbents, and an easy integration into process development workflows, are still lacking. In the present study an automated high-throughput screening (HTS) for fiber-based adsorbents was established on a robotic liquid handling station in 96 well filter plates. Two techniques - punching and weighing - were identified as techniques that enabled accurate and reproducible portioning of short-cut fiber-based adsorbents. The impact of several screening parameters such as phase ratio, shaking frequency, and incubation time were investigated and optimized for different types of fiber-based adsorbents. The data from the developed HTS correlated with data from packed fiber columns, and binding capacities from both scales matched closely. Subsequently, the developed HTS was utilized to optimize the hydrogel architecture of anion exchange (AEX) fiber-based adsorbent prototypes. A novel AEX fiber-based adsorbent was developed that compared favorably with existing resin and membrane adsorbents in terms of productivity and DNA binding capacity. In addition, the developed HTS was also successfully employed in order to identify step elution conditions for the purification of a monoclonal antibody from product- and process-related impurities with a cation exchange (CEX) fiber-based adsorbent. Trends from the HTS were found to be in good agreement with trends from lab scale column runs. The tool developed in this paper will enable a faster and more complete characterization of fiber-based adsorbents, easier tailoring of such adsorbents towards specific process applications, and an easier integration of such materials into processes. In comparison to previous lab scale experiments, material requirements are reduced by a factor of 3-40 and time requirements are reduced by a factor of 2-5.
Collapse
Affiliation(s)
- Johannes Winderl
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Stephan Bürkle
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
6
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
7
|
Zeng K, Sun EJ, Liu ZW, Guo J, Yuan C, Yang Y, Xie H. Synthesis of magnetic nanoparticles with an IDA or TED modified surface for purification and immobilization of poly-histidine tagged proteins. RSC Adv 2020; 10:11524-11534. [PMID: 35495316 PMCID: PMC9050487 DOI: 10.1039/c9ra10473a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles (MNPs) chelating with metal ions can specifically interact with poly-histidine peptides and facilitate immobilization and purification of proteins with poly-histidine tags. Fabrication of MNPs is generally complicated and time consuming. In this paper, we report the preparation of Ni(ii) ion chelated MNPs (Ni-MNPs) in two stages for protein immobilization and purification. In the first stage, organic ligands including pentadentate tris (carboxymethyl) ethylenediamine (TED) and tridentate iminodiacetic acid (IDA) and inorganic Fe3O4–SiO2 MNPs were synthesized separately. In the next stage, ligands were grafted to the surface of MNPs and MNPs with a TED or IDA modified surface were acquired, followed by chelating with Ni(ii) ions. The Ni(ii) ion chelated forms of MNPs (Ni-MNPs) were characterized including morphology, surface charge, structure, size distribution and magnetic response. Taking a his-tagged glycoside hydrolase DspB (Dispersin B) as the protein representative, specific interactions were confirmed between DspB and Ni-MNPs. Purification of his-tagged DspB was achieved with Ni-MNPs that exhibited better performance in terms of purity and activity of DspB than commercial Ni-NTA. Ni-MNPs as enzyme carriers for DspB also exhibited good compatibility and reasonable reusability as well as improved performance in various conditions. This article reports a novel approach for synthesizing magnetic nanoparticles with a modified surface for purification and immobilization of histidine-tagged proteins.![]()
Collapse
Affiliation(s)
- Kai Zeng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - En-Jie Sun
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Ze-Wen Liu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Junhui Guo
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Chengqing Yuan
- School of Energy and Power Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Ying Yang
- Institute for Science and Technology in Medicine, Keele University Staffordshire ST4 7QB UK
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
8
|
Trang HK, Marcus RK. Application of polydopamine‐coated nylon capillary‐channeled polymer fibers as a stationary phase for mass spectrometric phosphopeptide analysis. Electrophoresis 2019; 41:215-224. [DOI: 10.1002/elps.201900392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hung K. Trang
- Clemson University Department of Chemistry Biosystems Research Complex Clemson SC USA
| | - R. Kenneth Marcus
- Clemson University Department of Chemistry Biosystems Research Complex Clemson SC USA
| |
Collapse
|