1
|
Bandini E, Schuster SA, Rahmani T, Lynen F. Maximizing sensitivity and selectivity in LC × LC-HRMS for pesticide analysis via exploitation of per-aqueous liquid chromatography. J Chromatogr A 2024; 1738:465403. [PMID: 39504705 DOI: 10.1016/j.chroma.2024.465403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
Accurate monitoring of pesticide residues at minimal concentrations is imperative for adherence to stringent regulatory standards in numerous countries. This study presents an innovative methodology employing comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry (LC × LC-HRMS). The approach ensures high sensitivity and selectivity in detecting targeted compounds. A pivotal component of this methodology is the utilization of per-aqueous liquid chromatography (PALC) as the first dimension, facilitating the use of water-based mobile phases and addressing solvent mismatch issues. The second dimension employs reversed-phase liquid chromatography (RPLC), enhancing the separation of compounds. PALC proves instrumental in refocusing and enables the practical application of narrow-diameter columns (1.5 mm I.D.). This column design permits a direct split-free connection of the LC × LC to an electrospray-based mass spectrometer (ESI-MS), contributing to heightened sensitivity. The MS acquisition is performed in a targeted single-ion monitoring mode, ensuring reliable quantification and identification of the pesticide compounds. A comprehensive evaluation of key performance metrics, including signal-to-noise ratio, limit of detection, and response linearity, is conducted. The methodology achieves a limit of detection below the ng mL-1 and exhibits response linearity within the concentration range of 1-100 ng mL-1. The robustness of the approach is further demonstrated through intra-day and inter-day repeatability validations. Furthermore, the platform is finally tested on a surface water sample. This study not only introduces an advanced analytical methodology for pesticide multi-residue analysis but also underscores the significance of PALC in enhancing sensitivity by facilitating the use of smaller-diameter columns and water-based mobile phases, along with the role of RPLC in enhancing separation. The proposed approach showcases promising results in achieving detection limits that match the stringent regulatory standards and reliable quantification for effective pesticide residue monitoring.
Collapse
Affiliation(s)
- Elena Bandini
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | | | - Turaj Rahmani
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Frédéric Lynen
- Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|
2
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2024; 43:936-976. [PMID: 37056215 DOI: 10.1002/mas.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analyzed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimization of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality, and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
3
|
Zorzella Fontana ME, Caiel da Silva R, Duarte Dos Santos I, Neu JP, Wouters RD, Babinski PJ, Hoffmann JF, Rossi RC, Essi L, Pizzutti IR. Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5082-5104. [PMID: 38990094 DOI: 10.1039/d4ay00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of medicinal herbs has increased significantly. However, the presence of pesticide residues and mycotoxins in medicinal herbs has generated constant discussion and concern among regulatory agencies. Developing and validating an analytical method for determining pesticides and mycotoxins in medicinal plants is challenging due to the naturally occurring substances in these plants. The purpose of this work was to develop and to optimize a sensitive, accurate, precise, effective QuEChERS method for simultaneous determination of over 160 pesticide and mycotoxin residues in complex medicinal plant matrices using LC-TQ-MS/MS. A comprehensive comparison of clean-up procedures and other parameters was conducted to achieve this goal. The validation procedure was performed according to SANTE 11312/2021. More polar analytes, such as acephate, methamidophos and omethoate, presented a higher negative matrix effect in both Melissa officinalis L. and Malva sylvestris L. However, other molecules, such as spirodiclofen, showed a 24% signal enhancement in M. officinalis and a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. Accuracy and precision were satisfactory according to SANTE 11312/2021 for 157 pesticide residues and mycotoxins in M. officinalis and for 152 molecules in M. sylvestris. LOQs at 10 µg kg-1 were achieved for 117 pesticides in M. officinalis and 99 pesticides in M. sylvestris. Among the mycotoxins, all four aflatoxins (B1, B2, G1 and G2) presented LOQs of 5 µg kg-1, and ochratoxin A had an LOQ of 10 µg kg-1 in M. officinalis. The same LOQ values were shown for these mycotoxins in M. sylvestris, except for aflatoxin B2 and ochratoxin A, which had LOQs of 20 µg kg-1. Moreover, in Southern Brazil, there has been no previous study on mycotoxin and pesticide contamination in medicinal herbs. Therefore, the application of this method was assessed through the analysis of forty-two real samples. Imidacloprid was found in M. officinalis, and methyl pirimiphos was found in M. sylvestris. The proposed method not only serves as a helpful tool for routine monitoring but also offers a basis for further research on risk assessment and control in food safety.
Collapse
Affiliation(s)
- Marlos Eduardo Zorzella Fontana
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Rosselei Caiel da Silva
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Ingrid Duarte Dos Santos
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
- UFSM - Federal University of Santa Maria, Food Science and Technology Department, 97105-900, Santa Maria/RS, Brazil
| | - Júlia Paula Neu
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Robson Dias Wouters
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Paola Jennifer Babinski
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Jessica Fernanda Hoffmann
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Rochele Cassanta Rossi
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Liliana Essi
- UFSM - Federal University of Santa Maria, Biology Department, 97105-900, Santa Maria/RS, Brazil
| | - Ionara Regina Pizzutti
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| |
Collapse
|
4
|
Kalhor M, Lapin J, Picciani M, Wilhelm M. Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification. Mol Cell Proteomics 2024; 23:100798. [PMID: 38871251 PMCID: PMC11269915 DOI: 10.1016/j.mcpro.2024.100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Rescoring of peptide spectrum matches originating from database search engines enabled by peptide property predictors is exceeding the performance of peptide identification from traditional database search engines. In contrast to the peptide spectrum match scores calculated by traditional database search engines, rescoring peptide spectrum matches generates scores based on comparing observed and predicted peptide properties, such as fragment ion intensities and retention times. These newly generated scores enable a more efficient discrimination between correct and incorrect peptide spectrum matches. This approach was shown to lead to substantial improvements in the number of confidently identified peptides, facilitating the analysis of challenging datasets in various fields such as immunopeptidomics, metaproteomics, proteogenomics, and single-cell proteomics. In this review, we summarize the key elements leading up to the recent introduction of multiple data-driven rescoring pipelines. We provide an overview of relevant post-processing rescoring tools, introduce prominent data-driven rescoring pipelines for various applications, and highlight limitations, opportunities, and future perspectives of this approach and its impact on mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Mostafa Kalhor
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Joel Lapin
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mario Picciani
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Munich Data Science Institute, Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Gonya S, Kallmerten P, Dinapoli P. Are Infants and Children at Risk of Adverse Health Effects from Dietary Deoxynivalenol Exposure? An Integrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:808. [PMID: 38929054 PMCID: PMC11204095 DOI: 10.3390/ijerph21060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Deoxynivalenol (DON) is a foodborne mycotoxin produced by Fusarium molds that commonly infect cereal grains. It is a potent protein synthesis inhibitor that can significantly impact humans' gastrointestinal, immune, and nervous systems and can alter the microbiome landscape. Low-dose, chronic exposure to DON has been found to stimulate the immune system, inhibit protein synthesis, and cause appetite suppression, potentially leading to growth failure in children. At higher doses, DON has been shown to cause immune suppression, nausea, vomiting, abdominal pain, headache, diarrhea, gastroenteritis, the malabsorption of nutrients, intestinal hemorrhaging, dizziness, and fever. A provisional maximum tolerable daily intake (PMTDI) limit of 1 µg/kg/body weight has been established to protect humans, underscoring the potential health risks associated with DON intake. While the adverse effects of dietary DON exposure have been established, healthcare communities have not adequately investigated or addressed this threat to child health, possibly due to the assumption that current regulatory exposure limits protect the public appropriately. This integrative review investigated whether current dietary DON exposure rates in infants and children regularly exceed PMTDI limits, placing them at risk of negative health effects. On a global scale, the routine contamination of cereal grains, bakery products, pasta, and human milk with DON could lead to intake levels above PMTDI limits. Furthermore, evidence suggests that other food commodities, such as soy, coffee, tea, dried spices, nuts, certain seed oils, animal milk, and various water reservoirs, can be intermittently contaminated, further amplifying the scope of the issue. Better mitigation strategies and global measures are needed to safeguard vulnerable youth from this harmful toxicant.
Collapse
Affiliation(s)
- Susan Gonya
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| | | | - Pamela Dinapoli
- Department of Nursing, College of Health and Human Services, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
6
|
Ning X, Ye Y, Ji J, Hui Y, Li J, Chen P, Jin S, Liu T, Zhang Y, Cao J, Sun X. Restricted-Access Media Column Switching Online Solid-Phase Extraction UHPLC-MS/MS for the Determination of Seven Type B Trichothecenes in Whole-Grain Preprocessed Foods and Human Exposure Risk Assessment. TOXICS 2024; 12:336. [PMID: 38787115 PMCID: PMC11126074 DOI: 10.3390/toxics12050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
With increasing health awareness and the accelerating pace of life, whole-grain prepared foods have gained popularity due to their health benefits and convenience. However, the potential risk of type B trichothecene toxins has also increased, and these mycotoxins in such foods are rarely regulated. In this study, a quantitative method combining a single-valve dual-column automatic online solid-phase extraction system with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the first time using restricted-access media columns. This method can simultaneously determine trace residues of seven type B trichothecenes within 15 min. The method is convenient, sensitive (limit of detection and quantification of 0.05-0.6 μg/kg and 0.15-2 μg/kg, respectively), accurate (recovery rates of 90.3%-106.6%, relative standard deviation < 4.3%), and robust (>1000 times). The established method was applied to 160 prepared food samples of eight categories sold in China. At least one toxin was detected in 70% of the samples. Whole-wheat dumpling wrappers had the highest contamination rate (95%) and the highest total content of type B trichothecenes in a single sample (2077.3 μg/kg). Exposure risk assessment indicated that the contamination of whole-grain prepared foods has been underestimated. The total health risk index of whole-wheat dumpling wrappers, which are susceptible to deoxynivalenol, reached 136.41%, posing a significant threat to human health. Effective measures urgently need to be taken to control this risk.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Yanchun Hui
- Sanyo Fine Trading Co., Ltd., Beijing 100176, China
| | - Jingyun Li
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Po Chen
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Tongtong Liu
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute of Food and Drug Control, Beijing 100050, China; (J.L.)
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (X.N.); (Y.Y.); (J.J.); (Y.Z.)
| |
Collapse
|
7
|
Ben Miri Y, Benabdallah A, Chentir I, Djenane D, Luvisi A, De Bellis L. Comprehensive Insights into Ochratoxin A: Occurrence, Analysis, and Control Strategies. Foods 2024; 13:1184. [PMID: 38672856 PMCID: PMC11049263 DOI: 10.3390/foods13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.
Collapse
Affiliation(s)
- Yamina Ben Miri
- Department of Biochemistry and Microbiology, Faculty of Sciences, Mohamed Boudiaf University, BP 166, M’sila 28000, Algeria;
| | - Amina Benabdallah
- Laboratory on Biodiversity and Ecosystem Pollution, Faculty of Life and Nature Sciences, University Chadli Bendjedid, El-Tarf 36000, Algeria;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agri-Resources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Djamel Djenane
- Food Quality and Safety Research Laboratory, Department of Food Sciences, Mouloud Mammeri University, BP 17, Tizi-Ouzou 15000, Algeria;
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento Palazzina A—Centro Ecotekne via Prov, le Lecce Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
8
|
Rosenberg E, Krska R. Analytical chemistry in front of the curtain! Anal Bioanal Chem 2024; 416:1787-1795. [PMID: 38263493 PMCID: PMC10901924 DOI: 10.1007/s00216-024-05128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
This feature article discusses the enabling role of analytical chemistry in important fields of research and development such as life science, material sciences and environmental sciences. It comments on the often limited visibility of analytical sciences in the public perception and suggests ways to overcome this shortcoming and to create bigger impact.
Collapse
Affiliation(s)
- Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-AC, 1060, Vienna, Austria.
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| |
Collapse
|
9
|
Caño-Carrillo I, Martínez-Piernas AB, Gilbert-López B, Molina-Díaz A, García-Reyes JF. Simultaneous analysis of highly polar and multi-residue-type pesticides by heart-cutting 2D-LC-MS. Talanta 2024; 266:124918. [PMID: 37454518 DOI: 10.1016/j.talanta.2023.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique for the analysis of non-volatile small organic molecules. However, one-dimensional liquid chromatography (1D-LC) cannot efficiently deal with mixtures of analytes with different physicochemical properties and, thus, specific chromatographic behaviour. As an alternative, this work proposes a two-dimensional liquid chromatography/high-resolution mass spectrometry (2D-LC-HRMS) approach for the simultaneous analysis of compounds with different polarities. It is based on the combination of hydrophilic interaction liquid chromatography (HILIC) in the first dimension (1D) and reversed-phase chromatography (RPLC) in the second dimension (2D), employing the heart-cutting methodology. The coupling between 1D and 2D was performed by a multiple heart-cutting (MHC) interface equipped with an active solvent modulation (ASM) valve. The aim of the study was the development of a 2D-LC methodology able to (i) acquire the 1D and 2D content by MS in a single analytical run, avoiding the loss of information caused by the MHC algorithm for filling the sampling loops; (ii) overcome the breakthrough problem caused by solvent incompatibility, modifying the 2D gradient during the ASM phase for this purpose. To evaluate the 2D-LC approach, pesticide residue analysis was proposed, selecting 20 pesticides covering a wide range of polarities (log Kow from -3.2 to 4.3) and including some of the so-called single residue method pesticides because of the difficulty of including them in 1D-LC multi-residue methods with satisfactory chromatographic resolution. The proposed strategy was to transfer in a single cut the void volume from the HILIC separation (consisting of the nonpolar pesticides) to the 2D for analysis under RPLC conditions. The developed assembly was assessed in a vegetable matrix (tomato) employing a hybrid QuEChERS/QuPPe sample treatment based on acetonitrile and methanol extraction. The proposed setup may be extended for 2D-LC applications where it is essential to acquire the entire content of both dimensions in a single data file just by coupling a selection valve to the MHC interface.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
10
|
Zhong C, Li S, Yin N, Zhang L, Jiang J, Wang X, Li P. Single extraction and integrated non-target data acquisition with data mining workflow for analysis of hazardous substances in agricultural plant products. Food Chem 2023; 429:136899. [PMID: 37478607 DOI: 10.1016/j.foodchem.2023.136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Identifying contaminants in agricultural plant food products (APFPs) is a major problem. In this study, we developed a single-step extraction and integrated non-target data acquisition (INDA) workflow for increasing hazardous substances coverage. D-optimal experimental designs were applied to optimize filter plate extraction (FPE) for one-single extraction of multipolar hazardous substances. The vDIA mode was used to collect all precursor ion fragments within the range to supplement data loss caused by DDA mode. The underlying principle of vDIA is to increase the utilization rate of MS2 spectra that are likely to identify a maximum number and minimum amounts of hazardous substances. Compared with traditional DDA mode alone, a combination of the two modes increased the rate of identification of hazardous substances by 18.5%. The molecular network of hazardous substance provided by GNPS could enable some metabolites and structure-related products to discover potentially hazardous substance.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Songhe Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Nanri Yin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
11
|
Hao F, Luo Y, Dong F, Pan X, Wu X, Zheng Y, Xu J. Simultaneous determination of 27 pesticides in corn and cow matrices by ultra-performance liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6202-6208. [PMID: 37937968 DOI: 10.1039/d3ay01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In this paper, we developed a sensitive UPLC-MS/MS method to determine pesticide residues in plant matrices (corn, fresh corn, fresh corn stover, old corn stover, and corn silage) and animal matrices (beef, fat, milk, milk fat, kidney, liver, and cow stomach) quantitatively. Twenty-seven pesticides were extracted with acetonitrile from all plant and animal matrices separately and purified with a mixture of primary secondary amine (PSA) and graphitized carbon black (GCB) or octadecylsilane (C18). The average recoveries of these compounds ranged from 60.7% to 118.2%, and the relative standard deviations were less than 20.0%. The limit of quantitation for all compounds was 0.01 mg kg-1 (for cyhalothrin and beta cypermethrin the LOQ was 0.02 mg kg-1). The establishment of multi-residue analysis methods for a variety of matrices can be used as a database for future method research. The results of this study are essential for calculating the transfer of pesticide residues from feed to animal products and for monitoring food safety, which will protect people's health and safety.
Collapse
Affiliation(s)
- Fengjiao Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Yuanyuan Luo
- Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute for the Control of Agrochemicals, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, People's Republic of China.
| |
Collapse
|
12
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
13
|
Otero P, Echave J, Chamorro F, Soria-Lopez A, Cassani L, Simal-Gandara J, Prieto MA, Fraga-Corral M. Challenges in the Application of Circular Economy Models to Agricultural By-Products: Pesticides in Spain as a Case Study. Foods 2023; 12:3054. [PMID: 37628052 PMCID: PMC10453233 DOI: 10.3390/foods12163054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The income and residue production from agriculture has a strong impact in Spain. A circular economy and a bioeconomy are two alternative sustainable models that include the revalorization of agri-food by-products to recover healthy biomolecules. However, most crops are conventional, implying the use of pesticides. Hence, the reutilization of agri-food by-products may involve the accumulation of pesticides. Even though the waste-to-bioproducts trend has been widely studied, the potential accumulation of pesticides during by-product revalorization has been scarcely assessed. Therefore, in this study, the most common pesticides found in eight highly productive crops in Spain are evaluated according to the available published data, mainly from EFSA reports. Among these, oranges, berries and peppers showed an increasing tendency regarding pesticide exceedances. In addition, the adverse effects of pesticides on human and animal health and the environment were considered. Finally, a safety assessment was developed to understand if the reutilization of citrus peels to recover ascorbic acid (AA) would represent a risk to human health. The results obtained seem to indicate the safety of this by-product to recover AA concentrations to avoid scurvy (45 mg/day) and improve health (200 mg/day). Therefore, this work evaluates the potential risk of pesticide exposure through the revalorization of agri-food by-products using peels from citruses, one of the major agricultural crops in Spain, as a case study.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Javier Echave
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Anton Soria-Lopez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Lucia Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Consejo Nacional de Investigaciones Científicas y Técnicas (INTEMA-CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, 32004 Ourense, Spain; (P.O.); (J.E.); (F.C.); (A.S.-L.); (L.C.); (J.S.-G.); (M.A.P.)
| |
Collapse
|
14
|
Mbisana M, Rebagamang T, Mogopodi D, Chibua I. Development and validation of a QuEChERS-LC-MS/MS method for determination of multiple mycotoxins in maize and sorghum from Botswana. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1141427. [PMID: 37746116 PMCID: PMC10512389 DOI: 10.3389/ffunb.2023.1141427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023]
Abstract
Climatic conditions such as drought, high temperatures, and pre-harvest rainfalls promote the occurrence of mycotoxins in grains. Contamination of staple food sources such as maize and sorghum means that many populations are at risk of being poisoned by mycotoxins. Hence the need for sensitive methods for their simultaneous analysis. Herein, a quick, easy, cheap, effective, rugged, and safe liquid chromatography tandem mass spectrometry (QuEChERS-LC-MS/MS) method for the simultaneous determination of ten mycotoxins in maize and sorghum is presented. The QuEChERS extraction procedure was optimized to maximize extraction recovery and minimize matrix effects while using relatively small quantities of organic solvents and acids. This method was validated according to Commission Implementing Regulation (EU) 2021/808, Commission Regulation (EC) No 1881/2006, and Regulation (EC) no. 401/2006. The developed method met the specified requirements. Recoveries of 80.77% to 109.83% and CVs below 15% were obtained. The correlation coefficient values (R2) were all above 0.98, and low limits of quantification ranging from 0.53 to 89.28 µg/Kg were recorded. The method was applied to 10 maize and 10 sorghum samples collected from markets in Botswana. Half of the samples had detectable mycotoxins, Aflatoxins, Fumonisins, T2-toxin, HT2-toxin, and Zearalenone. Two maize samples had levels of aflatoxin B1 above the maximum permitted level (2.55, 4.07 µg/Kg). These findings point to the necessity of more stringent monitoring of mycotoxins, particularly AFB1 in maize, as well as the value of regular assessment using LC-MS/MS.
Collapse
Affiliation(s)
- Mesha Mbisana
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | | | - Dikabo Mogopodi
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Inonge Chibua
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
15
|
Huang N, Sheng W, Bai D, Sun M, Ren L, Wang S, Zhang W, Jin Z. Multiplex bio-barcode based fluorometric immunoassay for simultaneous determination of zearalenone, fumonisin B1, ochratoxin A, and aflatoxin B1 in cereals. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Yuan X, Kim CJ, Jeong WT, Kyung KS, Noh HH. Factors Affecting Incurred Pesticide Extraction in Cereals. Molecules 2023; 28:5774. [PMID: 37570743 PMCID: PMC10420941 DOI: 10.3390/molecules28155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the effect of milling on the yields of incurred residues extracted from cereals. Rice, wheat, barley, and oat were soaked in nine pesticides (acetamiprid, azoxystrobin, imidacloprid, ferimzone, etofenprox, tebufenozide, clothianidin, hexaconazole, and indoxacarb), dried, milled, and passed through sieves of various sizes. The quick, easy, cheap, effective, rugged, and safe method and liquid chromatography-tandem mass spectrometry extracted and quantified the incurred pesticides, respectively. For rice and oat, the yields were higher for vortexed samples than for soaked samples. For rice, the yields improved as the extraction time increased from 1 to 5 min. The optimized method was validated based on the selectivity, limit of quantitation, linearity, accuracy, precision, and the matrix effect. For rice and barley, the average yields improved as the particle size decreased from <10 mesh to >60 mesh. For 40-60-mesh wheat and oat, all pesticides (except tebufenozide in oat) had the highest yields. For cereals, 0.5 min vortexing, 5 min extraction, and >40-mesh particle size should be used to optimize incurred pesticide extraction.
Collapse
Affiliation(s)
- Xiu Yuan
- Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (X.Y.); (C.J.K.); (W.T.J.)
| | - Chang Jo Kim
- Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (X.Y.); (C.J.K.); (W.T.J.)
| | - Won Tae Jeong
- Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (X.Y.); (C.J.K.); (W.T.J.)
| | - Kee Sung Kyung
- Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Ho Noh
- Residual Agrochemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea; (X.Y.); (C.J.K.); (W.T.J.)
| |
Collapse
|
17
|
Martín-Pozo L, Arena K, Cacciola F, Dugo P, Mondello L. Development and validation of a multi-class analysis of pesticides in corn products by comprehensive two-dimensional liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1701:464064. [PMID: 37201430 DOI: 10.1016/j.chroma.2023.464064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Due to the growing trend of organic food, there is still concern over the use of chemicals and pesticides in agriculture. In recent years, several procedures have been validated for the control of pesticides in food. In the present research, a comprehensive two-dimensional liquid chromatography coupled with tandem mass spectrometry is proposed for the first time for a multi-class analysis of 112 pesticides in corn-based products. Notably, a "reduced" QuEChERS-based method as extraction and clean-up procedure prior to the analysis, was successfully employed. Limits of quantification values were lower than the ones fixed by the European legislation; intra-day and inter-day precision were lower than 12.9% and 15.1%, respectively (at the 500 μg/kg concentration levels). Over 70% of the analytes provided recoveries between 70% and 120% range (at 50, 500 and 1000 µg/kg concentration levels) with standard deviation values below 20%. In addition, matrix effect values were in the range between 13% to 161%. The method was applied to the analysis of real samples, and three pesticides were detected at trace levels in both samples. The findings of this work pave the way for the treatment of complex matrices such as corn products.
Collapse
Affiliation(s)
- Laura Martín-Pozo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071 Granada, Spain; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
18
|
Caño-Carrillo I, Gilbert-López B, Montero L, Martínez-Piernas AB, García-Reyes JF, Molina-Díaz A. Comprehensive and heart-cutting multidimensional liquid chromatography-mass spectrometry and its applications in food analysis. MASS SPECTROMETRY REVIEWS 2023. [PMID: 37010157 DOI: 10.1002/mas.21843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In food analysis, conventional one-dimensional liquid chromatography methods sometimes lack sufficient separation power due to the complexity and heterogeneity of the analysed matrices. Therefore, the use of two-dimensional liquid chromatography (2D-LC) turns out to be a powerful tool to consider, especially when coupled to mass spectrometry (MS). This review presents the most remarkable 2D-LC-MS food applications reported in the last 10 years, including a critical discussion of the multiple approaches, modulation strategies as well as the importance of the optimisation of the different analytical aspects that will condition the 2D-LC-MS performance. The presence of contaminants in food (food safety), the food quality and authenticity or the relationship between the beneficial effects of food and human health are some of the fields in which most of the 2D-LC-MS applications are mainly focused. Both heart-cutting and comprehensive applications are described and discussed in this review, highlighting the potential of 2D-LC-MS for the analysis of such complex samples.
Collapse
Affiliation(s)
- Irene Caño-Carrillo
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Lidia Montero
- Institute of Food Science Research-CIAL (CSIC-UAM), Madrid, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| | - Antonio Molina-Díaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaén, Jaén, Spain
- University Research Institute for Olives Grove and Olive Oil, University of Jaén, Jaén, Spain
| |
Collapse
|
19
|
Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin. Molecules 2023; 28:molecules28031468. [PMID: 36771134 PMCID: PMC9921091 DOI: 10.3390/molecules28031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.
Collapse
|
20
|
Schincaglia A, Aspromonte J, Franchina FA, Chenet T, Pasti L, Cavazzini A, Purcaro G, Beccaria M. Current Developments of Analytical Methodologies for Aflatoxins' Determination in Food during the Last Decade (2013-2022), with a Particular Focus on Nuts and Nut Products. Foods 2023; 12:527. [PMID: 36766055 PMCID: PMC9914313 DOI: 10.3390/foods12030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
This review aims to provide a clear overview of the most important analytical development in aflatoxins analysis during the last decade (2013-2022) with a particular focus on nuts and nuts-related products. Aflatoxins (AFs), a group of mycotoxins produced mainly by certain strains of the genus Aspergillus fungi, are known to impose a serious threat to human health. Indeed, AFs are considered carcinogenic to humans, group 1, by the International Agency for Research on Cancer (IARC). Since these toxins can be found in different food commodities, food control organizations worldwide impose maximum levels of AFs for commodities affected by this threat. Thus, they represent a cumbersome issue in terms of quality control, analytical result reliability, and economical losses. It is, therefore, mandatory for food industries to perform analysis on potentially contaminated commodities before the trade. A full perspective of the whole analytical workflow, considering each crucial step during AFs investigation, namely sampling, sample preparation, separation, and detection, will be presented to the reader, focusing on the main challenges related to the topic. A discussion will be primarily held regarding sample preparation methodologies such as partitioning, solid phase extraction (SPE), and immunoaffinity (IA) related methods. This will be followed by an overview of the leading analytical techniques for the detection of aflatoxins, in particular liquid chromatography (LC) coupled to a fluorescence detector (FLD) and/or mass spectrometry (MS). Moreover, the focus on the analytical procedure will not be specific only to traditional methodologies, such as LC, but also to new direct approaches based on imaging and the ability to detect AFs, reducing the need for sample preparation and separative techniques.
Collapse
Affiliation(s)
- Andrea Schincaglia
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA, CONICET, Calle 47 Esq. 115, La Plata 1900, Argentina
| | - Flavio A. Franchina
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Marco Beccaria
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
21
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
22
|
Xu W, Zhao YQ, Jia WB, Liao SY, Bouphun T, Zou Y. Reviews of fungi and mycotoxins in Chinese dark tea. Front Microbiol 2023; 14:1120659. [PMID: 36910180 PMCID: PMC9992979 DOI: 10.3389/fmicb.2023.1120659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The fermentation is the main process to form the unique flavor and health benefits of dark tea. Numerous studies have indicated that the microorganisms play a significant part in the fermentation process of dark tea. Dark tea has the quality of "The unique flavor grows over time," but unscientific storage of dark tea might cause infestation of harmful microorganisms, thereby resulting in the remaining of fungi toxins. Mycotoxins are regarded as the main contributor to the quality of dark tea, and its potential mycotoxin risk has attracted people's attention. This study reviews common and potential mycotoxins in dark tea and discusses the possible types of masked mycotoxins in dark tea. A summary of the potential risks of mycotoxins and masked mycotoxins in dark tea is presented, intending to provide a reference for the prevention and risk assessment of harmful fungi in dark tea.
Collapse
Affiliation(s)
- Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yi-Qiao Zhao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wen-Bao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Si-Yu Liao
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Tunyaluk Bouphun
- Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Liang H, Hou Q, Zhou Y, Zhang L, Yang M, Zhao X. Centrifugation-Assisted Solid-Phase Extraction Coupled with UPLC-MS/MS for the Determination of Mycotoxins in ARECAE Semen and Its Processed Products. Toxins (Basel) 2022; 14:toxins14110742. [PMID: 36355992 PMCID: PMC9697234 DOI: 10.3390/toxins14110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins can occur naturally in a variety of agriculture products, including cereals, feeds, and Chinese herbal medicines (TCMs), via pre- and post-harvest contamination and are regulated worldwide. However, risk mitigation by monitoring for multiple mycotoxins remains a challenge using existing methods due to their complex matrices. A multi-toxin method for 22 mycotoxins (aflatoxin B1, B2, G1, G2, M1, M2; ochratoxin A, B, C; Fumonisin B1, B2, B3; 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, diace-toxyscirpenol, HT-2, T-2, deepoxy-deoxynivalenol, deoxynivalenol, neosolaniol, zearalenone, and sterigmatocystin) using centrifugation-assisted solid-phase extraction (SPE) clean-up prior to ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis for Arecae Semen and its processed products was developed and validated. Several experimental parameters affecting the extraction and clean-up efficiency were systematically optimized. The results indicated good linearity in the range of 0.1-1000 μg/kg (r2 > 0.99), low limits of detection (ranging from 0.04 μg/kg to 1.5 μg/kg), acceptable precisions, and satisfactory recoveries for the selected mycotoxins. The validated method was then applied to investigate mycotoxin contamination levels in Areca catechu and its processed products. The mycotoxins frequently contaminating Areca catechu were aflatoxins (AFs), and the average contamination level and number of co-occurring mycotoxins in the Arecae Semen slices (Binlangpian) were higher than those in commercially whole Arecae Semen and Arecae Semen Tostum (Jiaobinlang). Sterigmatocystin was detected in 5 out of 30 Arecae Semen slices. None of the investigated mycotoxins were detected in Arecae pericarpium (Dafupi). The results demonstrated that centrifugation-assisted SPE coupled with UHPLC-MS/MS can be a useful tool for the analysis of multiple mycotoxins in Areca catechu and its processed products.
Collapse
Affiliation(s)
- Huanyan Liang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Qianyu Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Yakui Zhou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
| | - Lei Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.Y.); (X.Z.); Tel.: +86-898-3158-9013 (X.Z.)
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China
- Correspondence: (M.Y.); (X.Z.); Tel.: +86-898-3158-9013 (X.Z.)
| |
Collapse
|
24
|
Sereshti H, Mohammadi Z, Soltani S, Najarzadekan H. A green miniaturized QuEChERS based on an electrospun nanofibrous polymeric deep eutectic solvent coupled to gas chromatography-mass spectrometry for analysis of multiclass pesticide residues in cereal flour samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Liang Z, Mahmoud Abdelshafy A, Luo Z, Belwal T, Lin X, Xu Y, Wang L, Yang M, Qi M, Dong Y, Li L. Occurrence, detection, and dissipation of pesticide residue in plant-derived foodstuff: A state-of-the-art review. Food Chem 2022; 384:132494. [DOI: 10.1016/j.foodchem.2022.132494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
26
|
Muehlwald S, Meyburg N, Rohn S, Buchner N. A Comparison between a Two-Dimensional Liquid Chromatography System and a Traditional QuEChERS-LC Method with Regard to Matrix Removal and Matrix Effects in Pesticide Analysis Using Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15005-15019. [PMID: 34855392 DOI: 10.1021/acs.jafc.1c05199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a fully automated two-dimensional liquid chromatography (2D-LC) system was used for the investigation of the clean-up effect and was compared with a traditional Quick Easy Cheap Effective Rugged and Safe (QuEChERS) liquid chromatography (LC) method. The focus of those investigations was on negative electrospray ionization (ESI) mode. For that purpose, matrix fingerprinting profiles were created. The results allowed a comparison of both methods regarding the estimation of the number and the polarity of detected compounds. Moreover, the results of the present study were compared with the results generated in positive ESI mode (presented in a previous study). Furthermore, the two methods were compared with regard to matrix effects (ME) of 321 analytes in positive ESI mode and 96 analytes in negative ESI mode. In general, fewer compounds could be detected when 2D-LC and/or the negative ESI mode was used. Especially, very polar compounds with m/z values >1000 could be separated and could not be detected anymore when 2D-LC was applied. Furthermore, the best results were obtained for most analytes when 2D-LC was used, although the extent of ME seemed to be higher with 2D-LC.
Collapse
Affiliation(s)
- Sandra Muehlwald
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nina Meyburg
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Department of Food Chemistry and Analysis, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Nadja Buchner
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| |
Collapse
|
27
|
Qie M, Li S, Guo C, Yang S, Zhao Y. Study of the occurrence of toxic alkaloids in forage grass by liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1654:462463. [PMID: 34438299 DOI: 10.1016/j.chroma.2021.462463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022]
Abstract
The toxic alkaloids in forage grass present a serious health hazard to humans and livestock, especially ergot alkaloids (EAs), pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs). Hence, there is a need for a simultaneous method that allows these dangerous plant toxins to be determined. A simple and effective method was developed to determine fifteen toxic alkaloids (EAs, PAs and TAs) in forage grass using the QuEChERS method and liquid chromatography tandem mass spectrometry (LC-MS/MS). The developed method was validated with average recoveries ranging from 63.10 to 102.10%, and relative standard deviations lower than or equal to 6.39% were obtained. Good linearity over the concentration range of 10-600 µg/kg dry matter (DM) was observed for the target alkaloids. The determination coefficients R2 calculated for each of the matrix calibration curves were greater than 0.99. The limits of detection and quantification were 5 µg/kg DM and 10 µg/kg DM, respectively. The reproducibility of the method was verified in three laboratories: all of the mean recoveries of 15 alkaloids were higher than 60%, and the relative standard deviations in alkaloids between laboratories were all less than 14.24%. The proposed method was applied to analyse 134 forage grass samples from the meadow steppe of Inner Mongolia to monitor toxic alkaloids. A significant difference in the frequency of contamination was found between different herbage species and different regions.
Collapse
Affiliation(s)
- Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Shuangyue Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Chuntao Guo
- Bceijing Purkinje General Instrument Co., Ltd., Beijing 101200, P.R. China
| | - Shuming Yang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China; Key Laboratory of Agro-product Quality and Safety, Ministry of Agriculture, Beijing 100081, P.R. China.
| |
Collapse
|
28
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 2021; 413:3041-3054. [PMID: 33713146 PMCID: PMC8044062 DOI: 10.1007/s00216-021-03239-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (-85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489, Berlin, Germany.
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
29
|
Bochetto A, Merino N, Kaplan M, Guiñez M, Cerutti S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Pires NA, Gonçalves De Oliveira ML, Gonçalves JA, Faria AF. Multiclass Analytical Method for Pesticide and Mycotoxin Analysis in Malt, Brewers' Spent Grain, and Beer: Development, Validation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4533-4541. [PMID: 33847116 DOI: 10.1021/acs.jafc.0c07004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A multiclass analytical method to determine pesticides and mycotoxins in beer-related matrices based on the dilute and shoot approach was optimized and validated according to the European guidelines SANTE/12682/2019 and EC/401/2006. Extraction used acidified acetonitrile at 1% (v/v) acetic acid, followed by horizontal shaking homogenization, centrifugation, freeze-out step for cleanup, another centrifugation, and injection into a high-performance liquid chromatography-tandem mass spectrometry system. Linearity, detection and quantification limits, accuracy, and measurement uncertainty were evaluated, and 201, 184, and 176 analytes were validated for malt, beer, and brewers' spent grain, respectively. The limits of quantification ranged between 1 and 200 μg kg-1 and between 5 and 1000 μg kg-1 for beer and malt, respectively, and expanded uncertainties ranged between 9.7 and 50%, meeting the legislation requirements. A total of 40 samples have been analyzed thus far, and 36 of them exhibited the presence of some of the analyzed substances. The validated method is reliable and easy to apply for mycotoxin and pesticide determination in complex matrices.
Collapse
Affiliation(s)
- Nilsrael Alves Pires
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Federal Laboratory of Agricultural Defense of Minas Gerais, Ministry of Agriculture, Livestock and Food Supply, Avenida Rômulo Joviano s/n, Pedro Leopoldo, Minas Gerais 33600-000, Brazil
| | - Mauro Lucio Gonçalves De Oliveira
- Federal Laboratory of Agricultural Defense of Minas Gerais, Ministry of Agriculture, Livestock and Food Supply, Avenida Rômulo Joviano s/n, Pedro Leopoldo, Minas Gerais 33600-000, Brazil
| | - José Ailton Gonçalves
- Federal Laboratory of Agricultural Defense of Minas Gerais, Ministry of Agriculture, Livestock and Food Supply, Avenida Rômulo Joviano s/n, Pedro Leopoldo, Minas Gerais 33600-000, Brazil
| | - Adriana Ferreira Faria
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
31
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Arena K, Mandolfino F, Cacciola F, Dugo P, Mondello L. Multidimensional liquid chromatography approaches for analysis of food contaminants. J Sep Sci 2020; 44:17-34. [DOI: 10.1002/jssc.202000754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Katia Arena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Filippo Mandolfino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences University of Messina Messina Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- Department of Sciences and Technologies for Human and Environment University Campus Bio‐Medico of Rome Rome Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
33
|
Tebele SM, Gbashi S, Adebo O, Changwa R, Naidu K, Njobeh PB. Quantification of multi-mycotoxin in cereals (maize, maize porridge, sorghum and wheat) from Limpopo province of South Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1922-1938. [PMID: 32897164 DOI: 10.1080/19440049.2020.1808715] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Mycotoxins are secondary metabolites that are produced by filamentous mycotoxigenic fungi belonging to the Alternaria, Aspergillus, Fusarium and Penicillium genera amongst others. Multi-class mycotoxins were extracted from 55 cereal samples and analysed using liquid chromatography-tandem mass spectrometry. The adopted extraction method for maize, maize porridge, sorghum and wheat was comprehensively validated. This method was further tested to determine the natural occurrence of mycotoxins in foodstuffs. Twelve (12) out of 22 mycotoxins were detected in maize, maize porridge, sorghum and wheat, including α-zearalenol (α-ZEL) (89%), fumonisin B3 (FB3) (84%), fumonisin B1 (FB1) (80%), tenuazonic acid (TeA) (78%), ochratoxin B (42%), deoxynivalenol (DON) (12%), ochratoxin A (11%), 3-acetyldeoxynivalenol (7%), sterigmatocystin (STG) (6%), 15-acetyldeoxynivalenol (2%), cyclopiazonic acid (CPA) (2%) and aflatoxin B2 (2%). The data revealed high incidence rate of α-ZEL (range: 6.5-70.5 µg kg-1) in all matrices. Maize samples had high mycotoxin co-occurrence compared to other matrices. All recovered mycotoxins in food commodities were within the maximum regulatory limits, with the exception of fumonisins (FB1 and FB3) exceeded the South African and European Commission regulation, and the highest concentration was 2153 µg kg-1 in maize. It is essential to monitor the level of emerging mycotoxins in food commodities from rural areas as trace amount of CPA (< limit of quantification), STG (range: 0.30-0.74 µg kg-1) were detected and high concentration of TeA (292.7 µg kg-1) was detected in sorghum. The occurrence of these mycotoxins further encourages frequent analyses, their co-occurrence in the samples poses a significant threat to public health and more emphasis should thus be placed on reducing the contamination levels of these toxins in staples.
Collapse
Affiliation(s)
- Shandry Mmasetshaba Tebele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| | - Oluwafemi Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| | - Rumbidzai Changwa
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| | - Kayleen Naidu
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus , Doornfontein, South Africa
| |
Collapse
|
34
|
Reinholds I, Bogdanova E, Pugajeva I, Alksne L, Stalberga D, Valcina O, Bartkevics V. Determination of Fungi and Multi-Class Mycotoxins in Camelia Sinensis and Herbal Teas and Dietary Exposure Assessment. Toxins (Basel) 2020; 12:toxins12090555. [PMID: 32872457 PMCID: PMC7551389 DOI: 10.3390/toxins12090555] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
In this paper, a study of fungal and multi-mycotoxin contamination in 140 Camellia sinensis and 26 herbal teas marketed in Latvia is discussed. The analysis was performed using two-dimensional liquid chromatography with time-of-flight mass spectrometry (2D-LC-TOF-MS) and MALDI-TOF-MS. In total, 87% of the tea samples tested positive for 32 fungal species belonging to 17 genera, with the total enumeration of moulds ranging between 1.00 × 101 and 9.00 × 104 CFU g−1. Moreover, 42% of the teas (n = 70) were contaminated by 1 to 16 mycotoxins, and 37% of these samples were positive for aflatoxins at concentrations ranging between 0.22 and 41.7 µg kg−1. Deoxynivalenol (DON) and its derivatives co-occurred in 63% of the tea samples, with their summary concentrations reaching 81.1 to 17,360 µg kg−1. Ochratoxin A (OTA), enniatins, and two Alternaria toxins were found in 10–37% of the teas at low concentrations. The dietary exposure assessment based on the assumption of a probable full transfer of determined mycotoxins into infusions indicated that the analysed teas are safe for consumers: the probable maximum daily exposure levels to OTA and the combined DON mycotoxins were only 0.88 to 2.05% and 2.50 to 78.9% of the tolerable daily intake levels.
Collapse
Affiliation(s)
- Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
- Faculty of Chemistry, University of Latvia, Riga LV-1004, Latvia
- Correspondence: ; Tel.: +371-2680-2448
| | - Estefanija Bogdanova
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Darta Stalberga
- Faculty of Medicine and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden;
| | - Olga Valcina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Riga LV-1076, Latvia; (E.B.); (I.P.); (L.A.); (O.V.); (V.B.)
- Faculty of Chemistry, University of Latvia, Riga LV-1004, Latvia
| |
Collapse
|
35
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
36
|
Muehlwald S, Meyburg N, Rohn S, Buchner N. Comparing a two-dimensional liquid chromatography with a quick, easy, cheap, effective, rugged, and safe protocol-based liquid chromatography method for matrix removal in pesticide analysis using time-of-flight mass spectrometry. J Chromatogr A 2020; 1623:461153. [PMID: 32505272 DOI: 10.1016/j.chroma.2020.461153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
In this study, a clean-up approach using a two-dimensional liquid chromatography (2D-LC) consisting of a hydrophilic interaction liquid chromatography column and a reversed phase column was investigated. A fully automated 2D-LC system was used and compared with a traditional quick, easy, cheap, effective, rugged, and safe (QuEChERS) liquid chromatography (QuE-LC) method. The comparison was based on the results of a validation of selected analytes. It was investigated whether the detectability of analytes could be improved by the use of the 2D-LC. On the basis of these results, the relative detection rates were determined for every matrix. By means of those detection rates, the matrices were categorized regarding their complexity. Furthermore, the applicability of the 2D-LC was tested by participation in the European Proficiency Test in Fruits and Vegetables Screening Methods. In order to evaluate the separation and the elution profile of matrix components, multivariate data analysis was applied. For this purpose, ten matrices were processed in accordance to a QuEChERS protocol and the protocol for 2D-LC analysis. Moreover, the reagent blanks of the corresponding matrix were processed and analyzed by QuE-LC and 2D-LC. The results allowed evaluating the number of detected compounds for both methods. Additionally, the influence of compounds originating from reagent blanks can be estimated. In general, less compounds could be detected when 2D-LC was used. Especially, these were very polar compounds and compounds with m/z values >1500. These compounds seem to originate primarily from the used reagents especially from the citrate salts. However, the most of these compounds could be separated and were not detectable any more when 2D-LC was used. The results of the comparison based on validation and participation in the European Proficiency Test also show a better detectability for the most analytes with 2D-LC.
Collapse
Affiliation(s)
- Sandra Muehlwald
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany.
| | - Nina Meyburg
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| | - Sascha Rohn
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, Grindelallee 117, 20146 Hamburg, Germany
| | - Nadja Buchner
- Federal Office of Consumer Protection and Food Safety, Mauerstraße 39-42, 10117 Berlin, Germany
| |
Collapse
|
37
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4657-4669. [PMID: 32216338 DOI: 10.1021/acs.jafc.9b07491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, a reliable and sensitive method for the determination of 38 (modified) mycotoxins was developed. Using a QuEChERS-based extraction method [acetonitrile/water/formic acid (75:20:5, v/v/v)], followed by two runs of high performance liquid chromatography tandem mass spectrometry with different conditions, relevant mycotoxins in cereals were analyzed. The method was validated according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002. Limits of quantification ranged from 0.05 to 150 μg/kg. Good linearity (R2 > 0.99), recovery (61-120%), repeatability (RSDr < 15%), and reproducibility (RSDR < 20%) were obtained for most mycotoxins. However, validation results for Alternaria toxins and fumonisins were unsatisfying. Matrix effects (-69 to +59%) were compensated for using standard addition. Application on reference materials gave correct results while analysis of samples from local retailers revealed contamination, especially with deoxynivalenol, deoxynivalenol-3-glucoside, fumonisins, and zearalenone, in concentrations up to 369, 58, 1002, and 21 μg/kg, respectively.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
38
|
Thompson TS, van den Heever JP, Limanowka RE. Hyoscyamine and Scopolamine in Honey by HILIC–ESI-MS/MS. Chromatographia 2020. [DOI: 10.1007/s10337-020-03880-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Tittlemier S, Cramer B, Dall’Asta C, Iha M, Lattanzio V, Maragos C, Solfrizzo M, Stranska M, Stroka J, Sumarah M. Developments in mycotoxin analysis: an update for 2018-19. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2535] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review summarises developments on the analysis of various matrices for mycotoxins that have been published in the period from mid-2018 to mid-2019. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes, and zearalenone are covered in individual sections. Advances in sampling strategies are also discussed in a dedicated section. In addition, developments in multi-mycotoxin methods – including comprehensive mass spectrometric-based methods as well as simple immunoassays – are also reviewed. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, Winnipeg, MB, R3C 3G8, Canada
| | - B. Cramer
- University of Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 23/A, 43124 Parma, Italy
| | - M.H. Iha
- Adolfo Lutz Institute of Ribeirão Preto, CEP 14085-410, Ribeirão Preto-SP, Brazil
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, 2440 Geel, Belgium
| | - M. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| |
Collapse
|
40
|
Ballesteros-Gómez A, Rubio S. Tunable solvency mixtures of tetrahydrofuran:water for efficient and fast extraction/clean-up of trace contaminants. J Chromatogr A 2019; 1602:135-141. [PMID: 31255246 DOI: 10.1016/j.chroma.2019.06.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
In this study, we investigated the potential of mixtures of tetrahydrofuran (THF) and water as tunable solvents for the microextraction of contaminants in solid and in liquid matrices. These two miscible solvents have very different dielectric constant and Hildebrand solubility parameters, so that tunable mixtures spanning a wide range of dispersion and hydrogen bonding forces could be easily prepared by simply changing their composition. In this way, rapid and more efficient extraction methods can be developed. A liquid-liquid and a solid-liquid microextraction method for the determination of bisphenol A (BPA) in urine and ochratoxin A (OTA) in cereal baby food were developed as a proof of concept. Both, the chemical composition and the relative solvency of the THF-water mixtures, expressed as Teas solubility parameters, were studied in order to gain some insights into the chemical interactions governing analyte extraction. For urine, the salting-out extraction with THF:water and NaCl was evaluated, a process which is still scarcely investigated for analytical purposes. These methods featured good recoveries (above 95%), satisfactory standard deviation (5-6%) and good sensitivity (detection limits of 0.l μg L-1 for BPA and of 0.l ng g-1 for OTA) with the advantages of simplicity, rapidity and low consumption of reagents. Recoveries for other compounds and matrices (bisphenols ad phosphorus flame retardants in dust and in tap water, dyes in tap water and OTA in powder milk) were also assessed to prove the wide potential of these tunable solvent mixtures.
Collapse
Affiliation(s)
- Ana Ballesteros-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Campus de Rabanales, 14071, Córdoba, Spain.
| | - Soledad Rubio
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Universidad de Córdoba, Campus de Rabanales, 14071, Córdoba, Spain
| |
Collapse
|