1
|
Yang J, Zhang D, Lu Y, Mai H, Wu S, Yang Q, Zheng H, Yu R, Luo H, Jiang P, Wu L, Zhong C, Zheng C, Yang Y, Cui J, Lei Q, He Z. A New Perspective on Gas Chromatography-Mass Spectrometry Urinary Metabolomic Analysis and Efficient Risk Assessment of Urolithiasis: Morning Urine Organic Acid Profiles. Kidney Blood Press Res 2024; 50:83-96. [PMID: 39662072 DOI: 10.1159/000542263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/10/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Urolithiasis is characterized by a high morbidity and recurrence rate, primarily attributed to metabolic disorders. The identification of more metabolic biomarkers would provide valuable insights into the etiology of stone formation and the assessment of disease risk. The present study aimed to seek potential organic acid (OA) biomarkers from morning urine samples and explore new methods based on machine learning (ML) for metabolic risk prediction of urolithiasis. METHODS Morning urine samples were collected from 117 healthy controls and 156 urolithiasis patients. Gas chromatography-mass spectrometry was used to obtain metabolic profiles. Principal component analysis and ML were carried out to screen robust markers and establish a prediction evaluation model. RESULTS There were 25 differential metabolites identified, such as palmitic acid, l-pyroglutamic acid, glyoxylate, and ketoglutarate, mainly involving arginine and proline metabolism, fatty acid degradation, glycine, serine, and threonine metabolism, glyoxylate and dicarboxylic acid metabolism. The urinary OA markers significantly improved the performance of the ML model. The sensitivity and specificity were up to 87.50% and 84.38%, respectively. The area under the receiver operating characteristic curve (AUC) was significantly improved (AUC = 0.9248). CONCLUSION The results suggest that OA profiles in morning urine can improve the accuracy of predicting urolithiasis risk and possibly help understand the involvement of metabolic perturbations in metabolic pathways of stone formation and to provide new insights.
Collapse
Affiliation(s)
- Jiangtao Yang
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Dongfang Zhang
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yan Lu
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Haixing Mai
- Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Song Wu
- Depatment of Urology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Qin Yang
- School of Physics and Optoelectronic Engineering of Yangtze University, Jingzhou, China
| | - Hanxiong Zheng
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ruqin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Hongmin Luo
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Panpan Jiang
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Liping Wu
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Caili Zhong
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Chenqing Zheng
- Shenzhen Aone Medical Laboratory Co., Ltd, Shenzhen, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaxiang Cui
- Health Science Center, Shenzhen University Affiliated Southern Hospital, Shenzhen, China
| | - Qifang Lei
- Depatment of Urology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Zhaohui He
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
2
|
Hopsort G, Latapie L, Groenen Serrano K, Loubière K, Tzedakis T. Deciphering the human urine matrix: a new approach to simultaneously quantify the main ions and organic compounds by ion chromatography/mass spectrometry (IC-MS). Anal Bioanal Chem 2023; 415:5337-5352. [PMID: 37394521 DOI: 10.1007/s00216-023-04808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Analyzing the composition of (human) urine plays a major role in the fields of biology and medicine. Organic molecules (such as urea, creatine) and ions (such as chloride, sulfate) are the major compounds present in urine, the quantification of which allows for the diagnosis of a subject's health condition. Various analytical methods have been reported for studying urine components and validated on the basis of known and referenced compounds. The present work introduces a new method able to simultaneously determine both major organic molecules and ions contained in urine, by combining ion chromatography using a conductimetric detector with mass spectroscopy. The analysis of organic and ionized compounds (anionic and cationic) was achieved in double injections. For quantification, the standard addition method was used. Human urine samples were pre-treated (diluted and filtered) for IC-CD/MS analysis. The analytes were separated in 35 min. Calibration ranges (0-20 mg.L-1) and correlation coefficients (> 99.3%) as well as detection (LODs < 0.75 mg.L-1) and quantification (LOQs < 2.59 mg.L-1) limits were obtained for the main organic molecules (lactic, hippuric, citric, uric, oxalic acids, urea, creatine, and creatinine) and ions (chloride, sulfate, phosphate, sodium, ammonium, potassium, calcium, and magnesium) contained in urine. The intra- and inter-day accuracies of the analytes consistently ranged from 0.1 to 5.0%, and the precision was within 4.0%. For all analytes, no significant matrix effects were observed, and recoveries ranged from 94.9 to 102.6%. Finally, quantitative results of analytes were obtained from 10 different human urine samples.
Collapse
Affiliation(s)
- Guillaume Hopsort
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Laure Latapie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Karine Groenen Serrano
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Karine Loubière
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Theodore Tzedakis
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
3
|
Kowalczyk NS, Prochaska ML, Worcester EM. Metabolomic profiles and pathogenesis of nephrolithiasis. Curr Opin Nephrol Hypertens 2023; 32:490-495. [PMID: 37530089 PMCID: PMC10403267 DOI: 10.1097/mnh.0000000000000903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
PURPOSE OF REVIEW Kidney stone disease is caused by supersaturation of urine with certain metabolites and minerals. The urine composition of stone formers has been measured to prevent stone recurrence, specifically calcium, uric acid, oxalate, ammonia, citrate. However, these minerals and metabolites have proven to be unreliable in predicting stone recurrence. Metabolomics using high throughput technologies in well defined patient cohorts can identify metabolites that may provide insight into the pathogenesis of stones as well as offer possibilities in therapeutics. RECENT FINDINGS Techniques including 1H-NMR, and liquid chromatography paired with tandem mass spectroscopy have identified multiple possible metabolites involved in stone formation. Compared to formers of calcium oxalate stones, healthy controls had higher levels of hippuric acid as well as metabolites involved in caffeine metabolism. Both the gut and urine microbiome may contribute to the altered metabolome of stone formers. SUMMARY Although metabolomics has offered several potential metabolites that may be protective against or promote stone formation, the mechanisms behind these metabolomic profiles and their clinical significance requires further investigation.
Collapse
|
4
|
Zhou Z, Feng D, Shi D, Gao P, Wang L, Wu Z. Untargeted and targeted metabolomics reveal bile acid profile changes in rats with ethylene glycol-induced calcium oxalate nephrolithiasis. Chem Biol Interact 2023; 381:110570. [PMID: 37244400 DOI: 10.1016/j.cbi.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Calcium oxalate (CaOx) nephrolithiasis is a prevalent disorder linked to metabolism. Examining metabolic alterations could potentially give an initial understanding of the origins of CaOx nephrolithiasis. This study aims to determine gut metabolic biomarkers differentiating CaOx nephrolithiasis utilizing untargeted and targeted metabolomics. CaOx nephrolithiasis model rats were built by 1% ethylene glycol administration. Histologic staining and renal function measurement revealed the presence of crystals in the lumen of the renal tubules, the renal injury and interstitial fibrosis in CaOx rats, demonstrating that the models of CaOx were established successfully. Hematoxylin & eosin (H&E) staining showed that CaOx group had inflammation and damage in the ileal tissue. Immunofluorescence and PCR results displayed that the tight junction proteins, ZO-1 and Occludin levels were decreased in the ileal tissues of the CaOx group. The untargeted metabolomic analysis revealed that 269 gut metabolites were differentially expressed between the CaOx group and the control group. Meanwhile, bile secretion, the main metabolic pathway in CaOx nephrolithiasis, was identified. Following, five significant bile acid metabolites were selected utilizing the targeted bile acid metabolomics, including Hyodeoxycholic acid (HDCA), Glycohyodeoxycholic acid (GHDCA), Nor-Deoxycholic Acid, omega-muricholic acid, and Taurolithocholic acid. Among these metabolites, HDCA and GHDCA presented the highest predictive accuracy with AUC = 1 to distinguish the CaOx group from the control group. As a result of network pharmacology, target genes of HDCA and GHDCA in CaOx nephrolithiasis were enriched in oxidative stress and apoptosis pathways. Conclusively, our study provides insight into bile acids metabolic changes related to CaOx nephrolithiasis. Although alterations in biochemical pathways indicate a complex pathology in CaOx rats, bile acid changes may serve as biomarkers of CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Dexiang Feng
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215123, PR China
| | - Donghui Shi
- Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, 215100, PR China
| | - Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China
| | - Lujia Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
5
|
Biomarkers in Urolithiasis. Urol Clin North Am 2023; 50:19-29. [DOI: 10.1016/j.ucl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhang XZ, Lei XX, Jiang YL, Zhao LM, Zou CY, Bai YJ, Li YX, Wang R, Li QJ, Chen QZ, Fan MH, Song YT, Zhang WQ, Zhang Y, Li-Ling J, Xie HQ. Application of metabolomics in urolithiasis: the discovery and usage of succinate. Signal Transduct Target Ther 2023; 8:41. [PMID: 36681678 PMCID: PMC9867757 DOI: 10.1038/s41392-023-01311-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Urinary stone is conceptualized as a chronic metabolic disorder punctuated by symptomatic stone events. It has been shown that the occurrence of calcium oxalate monohydrate (COM) during stone formation is regulated by crystal growth modifiers. Although crystallization inhibitors have been recognized as a therapeutic modality for decades, limited progress has been made in the discovery of effective modifiers to intervene with stone disease. In this study, we have used metabolomics technologies, a powerful approach to identify biomarkers by screening the urine components of the dynamic progression in a bladder stone model. By in-depth mining and analysis of metabolomics data, we have screened five differential metabolites. Through density functional theory studies and bulk crystallization, we found that three of them (salicyluric, gentisic acid and succinate) could effectively inhibit nucleation in vitro. We thereby assessed the impact of the inhibitors with an EG-induced rat model for kidney stones. Notably, succinate, a key player in the tricarboxylic acid cycle, could decrease kidney calcium deposition and injury in the model. Transcriptomic analysis further showed that the protective effect of succinate was mainly through anti-inflammation, inhibition of cell adhesion and osteogenic differentiation. These findings indicated that succinate may provide a new therapeutic option for urinary stones.
Collapse
Affiliation(s)
- Xiu-Zhen Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun-Jin Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-Xing Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiu-Zhu Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ming-Hui Fan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medical Genetics, West China Second University Hospital, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Ding Y, Pei C, Li K, Shu W, Hu W, Li R, Zeng Y, Wan J. Construction of a ternary component chip with enhanced desorption efficiency for laser desorption/ionization mass spectrometry based metabolic fingerprinting. Front Bioeng Biotechnol 2023; 11:1118911. [PMID: 36741764 PMCID: PMC9895787 DOI: 10.3389/fbioe.2023.1118911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction: In vitro metabolic fingerprinting encodes diverse diseases for clinical practice, while tedious sample pretreatment in bio-samples has largely hindered its universal application. Designed materials are highly demanded to construct diagnostic tools for high-throughput metabolic information extraction. Results: Herein, a ternary component chip composed of mesoporous silica substrate, plasmonic matrix, and perfluoroalkyl initiator is constructed for direct metabolic fingerprinting of biofluids by laser desorption/ionization mass spectrometry. Method: The performance of the designed chip is optimized in terms of silica pore size, gold sputtering time, and initiator loading parameter. The optimized chip can be coupled with microarrays to realize fast, high-throughput (∼second/sample), and microscaled (∼1 μL) sample analysis in human urine without any enrichment or purification. On-chip urine fingerprints further allow for differentiation between kidney stone patients and healthy controls. Discussion: Given the fast, high throughput, and easy operation, our approach brings a new dimension to designing nano-material-based chips for high-performance metabolic analysis and large-scale diagnostic use.
Collapse
Affiliation(s)
- Yajie Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Kai Li
- Department of Urology, Tianjin Third Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China,*Correspondence: Jingjing Wan,
| |
Collapse
|
8
|
Miller AW, Penniston KL, Fitzpatrick K, Agudelo J, Tasian G, Lange D. Mechanisms of the intestinal and urinary microbiome in kidney stone disease. Nat Rev Urol 2022; 19:695-707. [PMID: 36127409 PMCID: PMC11234243 DOI: 10.1038/s41585-022-00647-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Kidney stone disease affects ~10% of the global population and the incidence continues to rise owing to the associated global increase in the incidence of medical conditions associated with kidney stone disease including, for example, those comprising the metabolic syndrome. Considering that the intestinal microbiome has a substantial influence on host metabolism, that evidence has suggested that the intestinal microbiome might have a role in maintaining oxalate homeostasis and kidney stone disease is unsurprising. In addition, the discovery that urine is not sterile but, like other sites of the human body, harbours commensal bacterial species that collectively form a urinary microbiome, is an additional factor that might influence the induction of crystal formation and stone growth directly in the kidney. Collectively, the microbiomes of the host could influence kidney stone disease at multiple levels, including intestinal oxalate absorption and direct crystal formation in the kidneys.
Collapse
Affiliation(s)
- Aaron W Miller
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kate Fitzpatrick
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - José Agudelo
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gregory Tasian
- Division of Urology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Wang R, Xie L, Zhang J, Li J, Xie H, Yang Y, Ren H, Shang Z, Liu C. Characterization of the Metabolites and Construction of a Novel Diagnostic Panel in Calcium Oxalate Urolithiasis by Electrospray Ionization – Mass Spectrometry (ESI-MS) Metabolomics. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Rui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Linguo Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jingdong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Haotian Ren
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Wen J, Cao Y, Li Y, Zhu F, Yuan M, Xu J, Li J. Metabolomics analysis of the serum from children with urolithiasis using UPLC-MS. Clin Transl Sci 2021; 14:1327-1337. [PMID: 33580996 PMCID: PMC8301561 DOI: 10.1111/cts.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
Pediatric urolithiasis is a common urologic disease with high morbidity and recurrence rates. Recent studies have shown that metabolic dysfunction plays a vital role in the pathogenesis of urolithiasis, especially in children, but the specific mechanism is still unclear. Metabolomics is an ideal technology for exploring the mechanism of metabolic disorders in urolithiasis. In the present study, a serum metabolomics based on ultra‐performance liquid chromatography mass spectrometry was performed. A total of 50 children subjects were recruited for the study, including 30 patients with kidney stones and 20 normal controls (NCs). Principal component analysis and orthogonal partial least‐squares determinant analysis were carried, and 40 metabolites were found to be significantly altered in patients with kidney stones, mainly involving retinol metabolism, steroid hormone biosynthesis, and porphyrin and chlorophyll metabolism. The kidney stone group appeared to have a lower serum level of bilirubin, but a relative higher level of retinal, all‐transretinoic acid, progesterone, and prostaglandin E2 compared with those of the NC group. All the findings suggest that patients with urolithiasis have several metabolic characteristics, which are related to stone formation or compensation. These metabolites and pathways are very likely associated with development of kidney stones and should be considered as potential novel targets for treatment and prevention.
Collapse
Affiliation(s)
- Junxiang Wen
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yinyin Cao
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yang Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fenhua Zhu
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meifen Yuan
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Xu
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defect, Shanghai, China
| |
Collapse
|
11
|
Lv W, Zhao N, Zhao Q, Huang S, Liu D, Wang Z, Yang J, Zhang X. Discovery and validation of biomarkers for Zhongning goji berries using liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122037. [DOI: 10.1016/j.jchromb.2020.122037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/12/2020] [Accepted: 02/15/2020] [Indexed: 10/25/2022]
|