1
|
Zou PC, Zhang Y, Bian Y, Du RZ, Qian M, Feng XS, Du C, Zhang XY. Triazoles in the environment: An update on sample pretreatment and analysis methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117156. [PMID: 39383824 DOI: 10.1016/j.ecoenv.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Triazoles, due to their high bactericidal performance, have been widely used in the agricultural, clinical, and chemical industry. However, triazoles have been proven to cause endocrine-toxic and organ impairment in humans as a potentially toxic substance. Besides, because of the improper use and difficulty of degradation, triazoles pesticide residues left in the environment could pose a threat to the environment. Therefore, the rapid, reliable, accurate, and high-sensitivity triazoles analysis methods are significantly essential to effectively monitor their presence in various samples and safeguard human health. This review aims to summarize and update the progress of the pretreatment and analytical methods of triazole fungicides in environmental samples from 2012 to 2024. Common pretreatment methods used to extract and purify targets include simple steps (e.g., protein precipitation and coated blade spray), liquid-liquid extraction, solid-phase extraction, and various microextraction methods such as liquid-phase microextraction and solid-phase microextraction, among others. Detection methods mainly include liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, supercritical fluid chromatography, sensing methods, and capillary electrophoresis. In addition, we elaborate and compare the advantages and disadvantages of different pretreatment and analytical methods, and their development prospects are discussed.
Collapse
Affiliation(s)
- Pei-Chen Zou
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Min Qian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Cheng Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Wang Y, Guan Q, Jiao W, Li J, Zhao R, Zhang X, Fan W, Wang C. Isolation, identification and transcriptome analysis of triadimefon-degrading strain Enterobacter hormaechei TY18. Biodegradation 2024; 35:551-564. [PMID: 38530488 DOI: 10.1007/s10532-024-10076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
Triadimefon, a type of triazole systemic fungicide, has been extensively used to control various fungal diseases. However, triadimefon could lead to severe environmental pollution, and even threatens human health. To eliminate triadimefon residues, a triadimefon-degrading bacterial strain TY18 was isolated from a long-term polluted site and was identified as Enterobacter hormaechei. Strain TY18 could grow well in a carbon salt medium with triadimefon as the sole nitrogen source, and could efficiently degrade triadimefon. Under triadimefon stress, a total of 430 differentially expressed genes (DEGs), including 197 up-regulated and 233 down-regulated DEGs, were identified in strain TY18 using transcriptome sequencing (RNA-Seq). Functional classification and enrichment analysis revealed that these DEGs were mainly related to amino acid transport and metabolism, carbohydrate transport and metabolism, small molecule and pyrimidine metabolism. Interestingly, the DEGs encoding monooxygenase and hydrolase activity acting on carbon-nitrogen were highly up-regulated, might be mainly responsible for the metabolism in triadimefon. Our findings in this work suggest that strain E. hormaechei TY18 could efficiently degrade triadimefon for the first time. They provide a great potential to manage triadimefon biodegradation in the environment successfully.
Collapse
Affiliation(s)
- Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Qi Guan
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rui Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiqian Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
3
|
Guo C, Di S, Chen X, Wang Y, Qi P, Wang Z, Zhao H, Gu Y, Xu H, Lu Y, Wang X. Evaluation of chiral triticonazole in three kinds of fruits: enantioseparation, degradation, and dietary risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32855-32866. [PMID: 35020143 DOI: 10.1007/s11356-021-17896-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
The enantioselective behaviors of chiral pesticides would affect the accuracy of risk assessment. This study evaluated the enantioselectivity of chiral triticonazole (a widely used fungicide) in three kinds of fruits. Firstly, the enantioseparation of triticonazole enantiomers was carried out within 1.2 min utilizing CHIRALPAK OJ-3 column with a mixture of CO2 and methanol (93:7, v/v) using SFC-MS/MS. Secondly, field trials were conducted to clarify the enantioselective degradation and residue of S-( +)-triticonazole and R-(-)-triticonazole in fruits. The initial concentrations of rac-triticonazole were 25.1-93.1 ng/g, and enantioselective degradation was observed in pear, peach, and jujube after 2 h, 10 days, and 3 days, respectively. The degradation of S-( +)-triticonazole was fastest in pear (T1/2, 2.01 days), while the T1/2 of R-(-)-triticonazole was 5.02 days. The residue concentrations of rac-triticonazole were less than the MRL set by EU (10 ng/g) on the 3rd and 21st day in pear and peach, respectively, which were lower than 10 ng/g in jujube on the 30th day (no MRL). Finally, we found that the dietary intake risks of rac-triticonazole in fruits were low for 2-7 age, 20-50 age/female, and 20-50 age/male. The current study could provide complimentary references for the rational usage, MRL formulation, and risk assessment of chiral triticonazole.
Collapse
Affiliation(s)
- Chao Guo
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yuanlin Gu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Agriculture, Northeast Agricultural University, No.600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| |
Collapse
|
4
|
Teng C, Gu Y, Wang Y, Wang Z, Zhao H, Qi P, Guo C, Xu H, Di S, Wang X. Enantioselective Dissipation, Residue, and Risk Assessment of Diniconazole Enantiomers in Four Kinds of Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15512-15520. [PMID: 34927422 DOI: 10.1021/acs.jafc.1c03852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral diniconazole is a widely used triazole fungicide, while its enantioselective behaviors in fruits have not been reported. In this article, the absolute configuration was confirmed. A fast supercritical fluid chromatography-tandem mass spectrometry (SFC-MS/MS) method was developed for the chiral separation and enantioselective study of diniconazole in four kinds of fruits. The residual concentrations gradually decreased with time in four kinds of fruits after applying diniconazole. The dissipation half-lives of R-diniconazole and S-diniconazole were in the range of 5.3-7.9 and 2.5-7.1 days respectively, and S-diniconazole was degraded preferentially. The residue concentrations were lower than the EU's MRL (0.01 mg/kg) on the 40th (harvest time), 30th, and 10th day in pear, jujube, and apple, respectively. But, in peach, residue concentrations were still higher than the MRL after 60 days and the ratio of R/S was 2.2. These results could be helpful for the reasonable use and risk assessment of chiral diniconazole.
Collapse
Affiliation(s)
- Chunhong Teng
- College of Agriculture, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Yuanlin Gu
- College of Agriculture, Northeast Agricultural University, No. 600 Changjiang Road, Harbin 150030, P. R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Chao Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
- Institute of Fermentation Engineering, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
5
|
Preparation and applications of cellulose-functionalized chiral stationary phases: A review. Talanta 2021; 225:121987. [DOI: 10.1016/j.talanta.2020.121987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
|
6
|
Application of Chiral and Achiral Supercritical Fluid Chromatography in Pesticide Analysis: A Review. J Chromatogr A 2020; 1634:461684. [DOI: 10.1016/j.chroma.2020.461684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|
7
|
Lin L, Song S, Wu X, Liu L, Kuang H. A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1736010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|
8
|
Lin L, Song S, Wu X, Liu L, Kuang H. A colloidal gold immunochromatography test strip based on a monoclonal antibody for the rapid detection of triadimefon and triadimenol in foods. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1733934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Lu Lin
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Shanshan Song
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, People’s Republic of China
| |
Collapse
|