1
|
Liu CL, Jiang Y, Li HJ. Quality Consistency Evaluation of Traditional Chinese Medicines: Current Status and Future Perspectives. Crit Rev Anal Chem 2024:1-18. [PMID: 38252135 DOI: 10.1080/10408347.2024.2305267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Quality consistency evaluation of traditional Chinese medicines (TCMs) is a crucial factor that determines the safe and effective application in clinical settings. However, TCMs exhibit diverse, heterogeneous, complex, and flexible chemical compositions, as well as variability in preparation processes. These characteristics pose greater challenges in researching the consistency of TCMs compared to chemically synthesized and biological drugs. Therefore, it is paramount to develop effective strategies for evaluating the quality consistency of TCMs. From the starting point of quality properties, this review explores the strategy used to evaluate quality consistency in terms of chemistry-based strategy (chemical consistency) and the biology-based strategy (bioequivalence). Among them, the chemistry-based strategy is the mainstream, and biology-based strategy complements the chemistry-based strategy each other. Furthermore, the emerging chemistry-biology strategies (overall evaluation) is discussed, including individually combining strategy and integration strategy. Finally, this review provides insights into the challenges and future perspectives in this field. By highlighting current status and trends in TCMs quality consistency, this review aims to contribute to establishment of generally applicable chemistry-biology integrated evaluation strategy for TCMs. This will facilitate the advancement toward a higher stage of overall quality evaluation.
Collapse
Affiliation(s)
- Chun-Lu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
He P, Zhang C, Yang Y, Tang S, Liu X, Yong J, Peng T. Spectrum-Effect Relationships as an Effective Approach for Quality Control of Natural Products: A Review. Molecules 2023; 28:7011. [PMID: 37894489 PMCID: PMC10609026 DOI: 10.3390/molecules28207011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
As natural products with biological activity, the quality of traditional Chinese medicines (TCM) is the key to their clinical application. Fingerprints based on the types and contents of chemical components in TCM are an internationally recognized quality evaluation method but ignore the correlation between chemical components and efficacy. Through chemometric methods, the fingerprints represented by the chemical components of TCM were correlated with its pharmacodynamic activity results to obtain the spectrum-effect relationships of TCM, which can reveal the pharmacodynamic components information related to the pharmacodynamic activity and solve the limitations of segmentation of chemical components and pharmacodynamic research in TCM. In the 20th anniversary of the proposed spectrum-effect relationships, this paper reviews its research progress in the field of TCM, including the establishment of fingerprints, pharmacodynamic evaluation methods, chemometric methods and their practical applications in the field of TCM. Furthermore, the new strategy of spectrum-effect relationships research in recent years was also discussed, and the application prospects of this technology were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Teng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (P.H.); (C.Z.); (Y.Y.); (S.T.); (X.L.); (J.Y.)
| |
Collapse
|
3
|
Zhang Z, Zhang X, Li S, Chen Y, Li Z, Lian Y, Li W. Quality by design-based capillary electrophoresis method development for the quantitative analysis of four iridoid compounds in Gentiana macrophylla Radix. Electrophoresis 2023; 44:793-806. [PMID: 36787349 DOI: 10.1002/elps.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
In this study, the capillary electrophoresis-photodiode array detector was employed for the analysis of four iridoid compounds in Gentiana macrophylla Radix (RGM), and the method was optimized based on the concept of analytical quality by design (AQbD). The peak areas relative standard deviation (n = 3) and resolution of the four analytes were selected as critical method attributes. Fractional factorial design test combined with Pareto analysis were employed to screen critical method parameters (buffer concentration, pH, sodium dodecyl sulfate [SDS] micelle concentration, temperature, and voltage). Subsequently, three main factors (buffer concentration, buffer pH, and SDS concentration) were selected by central composite design test for constructing the design space. The optimal separation conditions as follows: capillary column (50.2 cm ×m50 µm, detection length 40 cm). Working background electrolyte consisted of 51 mmol/L borax solution (pH = 9.47) and 40 mmol/L SDS. The samples were injected by pressure (5 s at 0.5 psi) and the detection was performed at 254 nm. Applied voltage was 20 kV and column temperature was 23°C. The developed method is rapid and reliable for the quantitative analysis of four iridoid compounds in RGM, providing a reference for the application of AQbD concept in the analysis of natural products.
Collapse
Affiliation(s)
- Zhiyong Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xiaoyang Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Shunan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yun Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Yunlan Lian
- Shanxi Institute for Food and Drug Control, Taiyuan, Shanxi, P. R. China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
4
|
Capillary electrophoresis in phytochemical analysis: Advances and applications in the period 2018–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Noviana E, Indrayanto G, Rohman A. Advances in Fingerprint Analysis for Standardization and Quality Control of Herbal Medicines. Front Pharmacol 2022; 13:853023. [PMID: 35721184 PMCID: PMC9201489 DOI: 10.3389/fphar.2022.853023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 01/01/2023] Open
Abstract
Herbal drugs or herbal medicines (HMs) have a long-standing history as natural remedies for preventing and curing diseases. HMs have garnered greater interest during the past decades due to their broad, synergistic actions on the physiological systems and relatively lower incidence of adverse events, compared to synthetic drugs. However, assuring reproducible quality, efficacy, and safety from herbal drugs remains a challenging task. HMs typically consist of many constituents whose presence and quantity may vary among different sources of materials. Fingerprint analysis has emerged as a very useful technique to assess the quality of herbal drug materials and formulations for establishing standardized herbal products. Rather than using a single or two marker(s), fingerprinting techniques take great consideration of the complexity of herbal drugs by evaluating the whole chemical profile and extracting a common pattern to be set as a criterion for assessing the individual material or formulation. In this review, we described and assessed various fingerprinting techniques reported to date, which are applicable to the standardization and quality control of HMs. We also evaluated the application of multivariate data analysis or chemometrics in assisting the analysis of the complex datasets from the determination of HMs. To ensure that these methods yield reliable results, we reviewed the validation status of the methods and provided perspectives on those. Finally, we concluded by highlighting major accomplishments and presenting a gap analysis between the existing techniques and what is needed to continue moving forward.
Collapse
Affiliation(s)
- Eka Noviana
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Abdul Rohman
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.,Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
Yang T, Yang H, Ling G, Sun G. Evaluating the quality consistency of Keteling capsules by three-dimensional quantum fingerprints and HPLC fingerprint. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120820. [PMID: 34999361 DOI: 10.1016/j.saa.2021.120820] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Keteling capsules (KCs), as a kind of Traditional Chinese Medicine (TCM), have been widely used in curing cough and relieving asthma. However, the complicated compositions make it challenging to evaluate their quality consistency by common methods. Herein, we explored comprehensive and efficient strategies by combining the multiple techniques to monitor and assess the characteristics of KCs. We employed the fingerprints and corresponding quantum fingerprints by fourier transform infrared spectroscopy (FT-IR), ultraviolet (UV), and differential scanning calorimetry (DSC). The antioxidant activity profiles were also studied combined with the result of three-dimensional quantum fingerprints and showed a good correlation with the internal structure and physical-chemical state. Furthermore, the 17 samples were separated and identified simultaneously by HPLC quantitative fingerprint, of which four active ingredients (chlorogenic acid, p-coumaric acid, vitexin and isovitexin) were quantitatively determined. The 17 samples were successfully classified into different grades by the systematically quantified fingerprint method (SQFM) and the quality of the samples was integrated according to the mean algorithm. The mean algorithm fusion of different evaluation techniques was compared to reveal the relationship between them, which indicated the effective improvement in accuracy and integrality. The combination of multiple analytical techniques developed in this study would effectively improve the existing single analytical methods and provide new strategy for drug quality consistency control.
Collapse
Affiliation(s)
- Ting Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huizhi Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoxiang Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
7
|
Thermosensitive molecularly imprinted polymer coupled with HPLC for selective enrichment and determination of matrine in traditional Chinese medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123130. [DOI: 10.1016/j.jchromb.2022.123130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
|
8
|
Gong Y, Fan L, Wang L, Li J. Flos Sophorae Immaturus: Phytochemistry, bioactivities, and its potential applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2010216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuhong Gong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Department of Life Science, Lvliang University, Lvliang, Shanxi, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinwei Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Suwatronnakorn M, Issaravanich S, Palanuvej C, Ruangrungsi N. Standardization of Leonurus sibiricus L. aerial part and capillary electrophoresis quantitative analysis of its leonurine content. J Adv Pharm Technol Res 2021; 12:291-297. [PMID: 34345610 PMCID: PMC8300328 DOI: 10.4103/japtr.japtr_243_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 11/04/2022] Open
Abstract
The quality parameters of Leonurus sibiricus L. aerial part crude drugs were evaluated. Fifteen crude drugs were collected from various locations throughout Thailand. The transverse section of the stem of L. sibiricus showed quadrangular character highlighted the ribs with angular collenchyma. The epidermis was uniseriate with abundant glandular trichomes distribution. Prismatic calcium oxalate prisms were found in the stem medullary parenchyma.The histological character of crude drug powder showed bordered pitted vessel, fragment of fiber, glandular trichome, prism crystal, spiral vessel, starch granule, and stomata. The loss on drying, total ash, acid-insoluble ash, and moisture contents should be not more than 8.18, 15.28, 4.04, and 8.91 g/100 g dry weight, whereas ethanol and water-soluble extractive values should be not less than 7.67, and 17.21 g/100 g of dry weight, respectively. Leonurine in the crude drugs were analyzed by capillary electrophoresis (CE) with photodiode array detector. The ethanolic extraction performed by Soxhlet apparatus yielded 18.86 ± 4.09 g/100 g dry weight. The electropherogram detected at 277 nm showed the migration time of leonurine at 6.2 min. The developed CE was found to be valid for leonurine quantification in L. sibiricus ethanolic extract. The contents of leonurine in 15 crude drugs ranged from 0.79 to 4.23 mg/g with the average of 2.38 ± 1.10 mg/g dry weight. This study established the pharmacognostic specification of L. sibiricus crude drug in Thailand with special reference to a bioactive compound, leonurine. CE was beneficial technique for the analysis of leonurine in L. sibiricus aerial parts.
Collapse
Affiliation(s)
- Maneewan Suwatronnakorn
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Issaravanich
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Palanuvej
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nijsiri Ruangrungsi
- Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
10
|
Xu M, Zhang H, Tang T, Zhou J, Zhou W, Tan S, He B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: a critical review. Analyst 2021; 146:4724-4736. [PMID: 34269779 DOI: 10.1039/d1an00767j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Tong Tang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
11
|
Gackowski M, Przybylska A, Kruszewski S, Koba M, Mądra-Gackowska K, Bogacz A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021; 26:4141. [PMID: 34299418 PMCID: PMC8307982 DOI: 10.3390/molecules26144141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.
Collapse
Affiliation(s)
- Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Anna Przybylska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Stefan Kruszewski
- Biophysics Department, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska 13 Street, PL–85067 Bydgoszcz, Poland;
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Artur Bogacz
- Department of Otolaryngology and Oncology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Gong D, Zheng Z, Chen J, Pang Y, Sun G. Holistic quality evaluation of compound liquorice tablets using capillary electrophoresis fingerprinting combined with chemometric methods. NEW J CHEM 2021. [DOI: 10.1039/d0nj05461e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrated quality control of herbal medicine using eco-friendly capillary zone electrophoresis and equal weight ratio quantitative fingerprint method.
Collapse
Affiliation(s)
- Dandan Gong
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zijia Zheng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Jinyu Chen
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ying Pang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Guoxiang Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang
- China
| |
Collapse
|
13
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Yan S, Yue Y, Su L, Hao M, Wang X, Zuo T. Development of Electrochemical Oscillation Method for Identification of Prunus persica, Prunus davidiana, and Prunus armeniaca Nuts. Front Chem 2020; 8:748. [PMID: 33024743 PMCID: PMC7516034 DOI: 10.3389/fchem.2020.00748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
In this work, an electrochemical oscillation system has been developed using the Belousov-Zhabotinsky reaction. The effect of the combination of each reagent, reaction temperature, and stirring speed on the induction period, oscillating period, and oscillating life were optimized. The nuts of Prunus persica, Prunus davidiana, and Prunus armeniaca have been widely used for medical purposes. The proposed electrochemical oscillation system was then used for the identification of P. persica, P. davidiana, and P. armeniaca. Three nuts exhibited very different electrochemical oscillation profiles. The dendrogram was divided into three main principal infrageneric clades. Each cluster only contains one species, suggesting that no outlier was observed in this study. Based on the discussed results, we proposed a simple method for herbal medicine identification.
Collapse
Affiliation(s)
- Shuai Yan
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yinzi Yue
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lianlin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiaopeng Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Ting Zuo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
15
|
Simultaneous quantification of food colorants and preservatives in sports drinks by the high performance liquid chromatography and capillary electrophoresis methods evaluated using the red-green-blue model. J Chromatogr A 2020; 1620:460976. [DOI: 10.1016/j.chroma.2020.460976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
|
16
|
Wei XC, Cao B, Luo CH, Huang HZ, Tan P, Xu XR, Xu RC, Yang M, Zhang Y, Han L, Zhang DK. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin Med 2020; 15:56. [PMID: 32514289 PMCID: PMC7268247 DOI: 10.1186/s13020-020-00335-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
Quality consistency is one of the basic attributes of medicines, but it is also a difficult problem that natural medicines and their preparations must face. The complex chemical composition and comprehensive pharmacological action of natural medicines make it difficult to simply apply the commonly used evaluation methods in chemical drugs. It is thus urgent to explore the novel evaluation methods suitable for the characteristics of natural medicines. With the rapid development of analytical techniques and the deepening understanding of the quality of natural herbs, increasing numbers of researchers have proposed many new ideas and technologies. This review mainly focuses on the basic principles, technical characteristics and application examples of the chemical evaluation, biological evaluation methods and their combination in quality consistency evaluation of natural herbs. On the bases of chemical evaluation and clinical efficacy, new methods reflecting their pharmacodynamic mechanism and safety characteristics will be developed, and gradually towards accurate quality control, to achieve the goal of quality consistency. We hope that this manuscript can provide new ideas and technical references for the quality consistency of natural drugs and their preparations, thus better guarantee their clinical efficacy and safety, and better promote industrial development.
Collapse
Affiliation(s)
- Xi-Chuan Wei
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Bo Cao
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Chuan-Hong Luo
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Hao-Zhou Huang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Peng Tan
- Sichuan Academy of Traditional Chinese Medicine, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Chengdu, 610041 China
| | - Xiao-Rong Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Run-Chun Xu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Yi Zhang
- Chengdu Food and Drug Control, Chengdu, 610000 China
| | - Li Han
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| | - Ding-Kun Zhang
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, No. 1066 Avenue. Liutai, Chengdu, 611137 China
| |
Collapse
|