1
|
Azad B, Karimzadeh Z, Jabbaripour A, Jouyban-Gharamaleki V, Khoubnasabjafari M, Jouyban A, Rahimpour E. Utilizing a nanocomposite aerogel grafted with Fe 3O 4@GO for the extraction and determination of metoprolol in exhaled breath condensate. RSC Adv 2023; 13:30562-30574. [PMID: 37860171 PMCID: PMC10583263 DOI: 10.1039/d3ra03883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
This article presents a solid-phase extraction method combined with a spectrofluorometric method for the extraction/pre-concentration and determination of metoprolol (MET) in exhaled breath condensate. The extraction sorbent is an agarose aerogel nanocomposite grafted with graphene oxide (GO) Fe3O4. The size and morphology of the nanosorbent were characterized via X-ray crystallography, scanning electron microscopy, Fourier-transform infrared spectrometry, and Brunauer-Emmett-Teller analysis. Factors affecting the extraction/determination of MET were optimized using the one-at-a-time method. Under optimized experimental conditions, the calibration graph was linear in the range of 0.005 to 2.0 μg mL-1 with a detection limit of 0.001 μg mL-1. The method was successfully applied for the determination of MET in biological samples taken from patients receiving MET.
Collapse
Affiliation(s)
- Bita Azad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Karimzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences 5165665811 Tabriz Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science Tabriz Iran
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mori M, Aoyagi K, Tomoda T, Ishikawara F, Sakamoto S, Myochin H, Kuga M, Kozaki D, Ohshima N, Izumi T, Itabashi H, Shoho Y, Yoshida A, Tsunekawa K, Kimura T, Murakami M. Simultaneous capillary electrophoresis of anions and cations in a single injection using an anion exchanger-modified capillary for determination of salivary ions in combination with statistical analyses. J Chromatogr A 2020; 1635:461647. [PMID: 33291035 DOI: 10.1016/j.chroma.2020.461647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
This paper describes the simultaneous capillary electrophoresis (CE) of anions and cations using an anion exchange-modified capillary, which was prepared by chemical coating with a cationic silylating reagent, and its application to saliva analysis. The CE method provides high-throughput (5 min for a single sample injection) analysis by generating a high-velocity electroosmotic flow at pH 3.0-3.5. The detection limits at a signal-to-noise ratio of 3 ranged from 1.2 to 18 μM for anions and 1.0 to 2.7 μM for cations. The relative standard deviations for the migration times and peak areas of analytes (n = 4) ranged from 0.05% to 0.40% and 0.94% to 4.7%, respectively. The CE system was used to analyze 11 common ions in saliva samples collected from long-distance runners and sedentary university students before and after running for a set distance or a set time. Interestingly, the SCN- concentrations decreased in the saliva samples of all 14 athletes and 16 sedentary students after running. Furthermore, when the concentrations of the analyzed ions were compared with that of cortisol as a typical stress marker by multiple regression analysis, SCN- and NO3- in saliva samples from the two subject groups strongly correlated with cortisol levels, as determined by an electrochemiluminescence immunoassay. This study improves our knowledge of both the analytical methodology for CE and statistical methods for identifying common ions that could be used as physical stress markers.
Collapse
Affiliation(s)
- Masanobu Mori
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi, 780-8520, Japan.
| | - Keisuke Aoyagi
- Department of Chemical Engineering, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Toshihiro Tomoda
- Department of Chemical Engineering, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Fumi Ishikawara
- Department of Chemical Engineering, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shou Sakamoto
- Department of Chemical Engineering, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hironori Myochin
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi, 780-8520, Japan
| | - Midori Kuga
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi, 780-8520, Japan
| | - Daisuke Kozaki
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi, 780-8520, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-ku, Tokyo, 170-8445, Japan
| | - Hideyuki Itabashi
- Department of Chemical Engineering, Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Yoshifumi Shoho
- Faculty of Education, Ikuei University, 1656-1, Kyoume-machi, Takasaki, Gunma 370-0011, Japan
| | - Akihiro Yoshida
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|