1
|
Khajavinia A, Michel D, Ezeaka UC, Purves RW, Laprairie RB, El-Aneed A. Addressing a major interference in the quantification of psilocin in mouse plasma: Development of a validated liquid chromatography tandem mass spectrometry method. J Chromatogr A 2024; 1730:465123. [PMID: 38981146 DOI: 10.1016/j.chroma.2024.465123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Psilocybin is a psychedelic compound found in some hallucinogenic "magic mushrooms". Psilocin is the active metabolite of Psilocybin, and it is the subject of several studies for the treatment of psychological disorders, such as anxiety, depression, and post-traumatic stress disorder. As such, the pharmacokinetic properties of psilocin should be evaluated to ensure its safety and efficacy as part of the drug development process. Based on the previously published studies, reversed-phase liquid chromatography (LC) was tested for psilocin quantification. The analysis, however, showed a major interference in mouse plasma that was not, to the best of our knowledge, reported previously. We, therefore, aimed to identify and separate the interference, using various chromatographic columns, mobile phase conditions, and mass spectrometers (MS) instruments. Chromatographic separation was achieved on an ultra high performance liquid chromatography (UHPLC) system, and a quadrupole-linear ion trap equipped with an electrospray ionization (ESI) source was used in positive ion mode with multiple reaction monitoring (MRM). Several chromatographic conditions and column chemistries, including C-18 and Phenyl-hexyl were initially tested, and failed to separate the interference. Exact mass measurement and MS/MS analysis were used to determine the structure of the interfering compound, which was confirmed to be tryptophan. Using the identified structure of the interfering compound, a fast and reliable hydrophilic interaction liquid chromatography (HILIC)-MS/MS method was developed and validated, that was capable of separating psilocin from the interference while achieving a 0.5 ng/ml lower limit of quantification (LLOQ). The validated method was successfully applied to a pharmacokinetic study where psilocin was orally administered to C57BL/6 mouse subjects. Psilocin concentration in all the analyzed mouse plasma samples was successfully determined.
Collapse
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Udoka C Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Canadian Food Inspection Agency, Saskatoon, Saskatchewan S7N 2R3, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
2
|
Steuer AE, Sutter L, Steuer C, Kraemer T. New gamma-hydroxybutyric acid (GHB) biomarkers: Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of GHB amino acid, carnitine, and fatty acid conjugates in urine. Drug Test Anal 2022; 15:426-443. [PMID: 36562189 DOI: 10.1002/dta.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Gamma-hydroxybutyric acid (GHB) represents an important drug in clinical and forensic toxicology, particularly in the context of drug-facilitated crimes. Analytically, GHB remains a major challenge given its endogenous occurrence and short detection window. Previous studies identified a number of potential interesting novel conjugates of GHB with carnitine, amino acids (AA, glutamate, glycine, and taurine), or fatty acids. As a basis for comprehensive studies on the suitability of these novel biomarkers, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in human urine. Additionally, already known markers 2,4-dihydroxy butyric acid (2,4-DHB), 3,4-DHB, glycolic acid, succinic acid, succinylcarnitine, and GHB glucuronide were included. The method was fully validated according to (inter)national guidelines. Synthetic urine proved suitable as a surrogate matrix for calibration. Matrix effects were observed for all analytes with suppression effects of about 50% at QC LOW, and approximately 20% to 40% at QC HIGH, but with consistent standard deviation of <25% at QC LOW and <15% at QC HIGH, respectively. All analytes showed acceptable intra- and inter-day imprecision of below 20%, except for inter-day variation of GHB taurine and FA conjugates at the lowest QC. Preliminary applicability studies proved the usefulness of the method and pointed towards GHB glycine, followed by other AA conjugates as the most promising candidates to improve GHB detection. FA conjugates were not detected in urine samples yet. The method can be used now for comprehensive sample analysis on (controlled) GHB administration to prove the usefulness of the novel GHB biomarkers.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Linda Sutter
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Acide γ-Hydroxybutyrique (GHB), γ-butyrolactone (GBL) et 1,4-butanediol (1,4-BD) : revue de la littérature des aspects pharmacologiques, cliniques, analytiques et médico-légaux. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal 2022; 14:794-807. [PMID: 35194967 PMCID: PMC9544538 DOI: 10.1002/dta.3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Metabolomics is a multidisciplinary field providing workflows for complementary approaches to conventional analytical determinations. It allows for the study of metabolically related groups of compounds or even the study of novel pathways within the biological system. The procedural stages of metabolomics; experimental design, sample preparation, analytical determinations, data processing and statistical analysis, compound identification and validation strategies are explored in this review. The selected approach will depend on the type of study being conducted. Experimental design influences the whole metabolomics workflow and thus needs to be properly assessed to ensure sufficient sample size, minimal introduced and biological variation and appropriate statistical power. Sample preparation needs to be simple, yet potentially global in order to detect as many compounds as possible. Analytical determinations need to be optimised either for the list of targeted compounds or a universal approach. Data processing and statistical analysis approaches vary widely and need to be better harmonised for review and interpretation. This includes validation strategies that are currently deficient in many presented workflows. Common compound identification approaches have been explored in this review. Metabolomics applications are discussed for clinical and forensic toxicology, human and equine sports anti-doping and veterinary residues.
Collapse
Affiliation(s)
- Bethany Keen
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Adam Cawley
- Australian Racing Forensic LaboratoryRacing NSWSydneyNew South WalesAustralia
| | - Brian Reedy
- School of Mathematical and Physical SciencesUniversity of Technology SydneyBroadwayNew South WalesAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneyBroadwayNew South WalesAustralia
| |
Collapse
|
5
|
Derivatization-assisted LC-MS/MS method for simultaneous quantification of endogenous gamma-hydroxybutyric acid and its metabolic precursors and products in human urine. Anal Chim Acta 2022; 1194:339401. [DOI: 10.1016/j.aca.2021.339401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
|
6
|
Dias J, López SH, Mol H, de Kok A. Influence of different hydrophilic interaction liquid chromatography stationary phases on method performance for the determination of highly polar anionic pesticides in complex feed matrices. J Sep Sci 2021; 44:2165-2176. [PMID: 33760354 PMCID: PMC8251866 DOI: 10.1002/jssc.202001134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/29/2023]
Abstract
Hydrophilic interaction liquid chromatography is an alternative liquid chromatography mode for separation of polar compounds. In the recent years, this liquid chromatography mode has been recognized as an important solution for the analysis of compounds not amenable to reverse phase chromatography. In this work, we evaluated three different hydrophilic liquid chromatography stationary phases for the determination of 14 highly polar anionic molecules including pesticides such as glyphosate, glufosinate, ethephon and fosetyl, their main metabolites, and bromide, chlorate, and perchlorate. Several mobile phase compositions were evaluated combined with different gradients for the chromatographic run. The two columns that presented the best results were used to assess the performance for the determination of the 14 compounds in challenging highly complex feed materials. Very different matrix effects were observed for most of the compounds in each column, suggesting that different interactions can occur. Using isotopically labeled internal standards, acceptable quantitative performance and identification could be achieved down to 0.02 mg kg-1 (the lowest level tested) for most compounds. While one column was found to be favorable in terms of scope (suited for all 14 compounds), the other one was more suited for quantification and identification at lower levels, however, not for all analytes tested.
Collapse
Affiliation(s)
- Jonatan Dias
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen, The Netherlands
| | - Sonia Herrera López
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen, The Netherlands
| | - Hans Mol
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen, The Netherlands
| | - André de Kok
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen, The Netherlands
| |
Collapse
|
7
|
Erkmen C, Gebrehiwot WH, Uslu B. Hydrophilic Interaction Liquid Chromatography (HILIC): Latest Applications in the Pharmaceutical Researches. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200402101501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background:
Significant advances have been occurred in analytical research since the 1970s
by Liquid Chromatography (LC) as the separation method. Reverse Phase Liquid Chromatography
(RPLC) method, using hydrophobic stationary phases and polar mobile phases, is the most commonly
used chromatographic method. However, it is difficult to analyze some polar compounds with this
method. Another separation method is the Normal Phase Liquid Chromatography (NPLC), which involves
polar stationary phases with organic eluents. NPLC presents low-efficiency separations and
asymmetric chromatographic peak shapes when analyzing polar compounds. Hydrophilic Interaction
Liquid Chromatography (HILIC) is an interesting and promising alternative method for the analysis of
polar compounds. HILIC is defined as a separation method that combines stationary phases used in the
NPLC method and mobile phases used in the RPLC method. HILIC can be successfully applied to all
types of liquid chromatographic separations such as pharmaceutical compounds, small molecules, metabolites,
drugs of abuse, carbohydrates, toxins, oligosaccharides, peptides, amino acids and proteins.
Objective:
This paper provides a general overview of the recent application of HILIC in the pharmaceutical
research in the different sample matrices such as pharmaceutical dosage form, plasma, serum,
environmental samples, animal origin samples, plant origin samples, etc. Also, this review focuses on
the most recent and selected papers in the drug research from 2009 to the submission date in 2020,
dealing with the analysis of different components using HILIC.
Results and Conclusion:
The literature survey showed that HILIC applications are increasing every
year in pharmaceutical research. It was found that HILIC allows simultaneous analysis of many compounds
using different detectors.
Collapse
Affiliation(s)
- Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| | | | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara,Turkey
| |
Collapse
|
8
|
Metabolic Alterations Associated with γ-Hydroxybutyric Acid and the Potential of Metabolites as Biomarkers of Its Exposure. Metabolites 2021; 11:metabo11020101. [PMID: 33578991 PMCID: PMC7916753 DOI: 10.3390/metabo11020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/17/2022] Open
Abstract
γ-Hydroxybutyric acid (GHB) is an endogenous short chain fatty acid that acts as a neurotransmitter and neuromodulator in the mammalian brain. It has often been illegally abused or misused due to its strong anesthetic effect, particularly in drug-facilitated crimes worldwide. However, proving its ingestion is not straightforward because of the difficulty in distinguishing between endogenous and exogenous GHB, as well as its rapid metabolism. Metabolomics and metabolism studies have recently been used to identify potential biomarkers of GHB exposure. This mini-review provides an overview of GHB-associated metabolic alterations and explores the potential of metabolites for application as biomarkers of GHB exposure. For this, we discuss the biosynthesis and metabolism of GHB, analytical issues of GHB in biological samples, alterations in metabolic pathways, and changes in the levels of GHB conjugates in biological samples from animal and human studies. Metabolic alterations in organic acids, amino acids, and polyamines in urine enable discrimination between GHB-ingested animals or humans and controls. The potential of GHB conjugates has been investigated in a variety of clinical settings. Despite the recent growth in the application of metabolomics and metabolism studies associated with GHB exposure, it remains challenging to distinguish between endogenous and exogenous GHB. This review highlights the significance of further metabolomics and metabolism studies for the discovery of practical peripheral biomarkers of GHB exposure.
Collapse
|
9
|
Jin G, Ding J, Zhou Y, Xia D, Guo Z, Liang X. Synthesis and chromatographic evaluation of pyrazinedicarboxylic anhydride bonded stationary phase. J Chromatogr A 2021; 1638:461825. [PMID: 33450715 DOI: 10.1016/j.chroma.2020.461825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023]
Abstract
A silica based hydrophilic stationary phase bonding with 2,3-pyrazinedicarboxylic anhydride and amino groups was synthesized via amino-acid anhydride ring opening reaction. The bonded groups could not only provide hydrophilic interaction, but also electrostatic, π-π and hydrogen bonding interactions, etc. The results of characterization with elemental analysis and solid-state 13C cross-polarization magic-angle-spinning NMR indicated the successful preparation of amino and carboxyl bonded stationary phase named ZAC. The ζ-potential of ZAC stationary phase showed the negatively charge was dominate at pH larger than 3.5. Chromatographic evaluation revealed that ZAC stationary phase behaved well under HILIC mode. It showed different selectivity and retention compared to some typical commercial columns, and it was validated by the separation of chitooligosaccharides, flavonoid glycosides, organic acids and alkaloid samples. Based on the different selectivity between ZAC stationary phase and C18 columns, ZAC stationary phase also showed different selectivity with C18. And it was verified by the separation of Lonicerae Japonicae Flos and Menispermi Rhizoma extracts.
Collapse
Affiliation(s)
- Gaowa Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Chinese medicine science center of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Nanchang 330100, China
| | - Junjie Ding
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongzheng Zhou
- Jiangxi Chinese medicine science center of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Nanchang 330100, China
| | - Donghai Xia
- Jiangxi Chinese medicine science center of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Nanchang 330100, China
| | - Zhimou Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Chinese medicine science center of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Nanchang 330100, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Chinese medicine science center of Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Nanchang 330100, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|