1
|
Szymczyk P, Majewska M, Nowak J. Proteins and DNA Sequences Interacting with Tanshinones and Tanshinone Derivatives. Int J Mol Sci 2025; 26:848. [PMID: 39859562 PMCID: PMC11765770 DOI: 10.3390/ijms26020848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025] Open
Abstract
Tanshinones, biologically active diterpene compounds derived from Salvia miltiorrhiza, interact with specific proteins and DNA sequences, influencing signaling pathways in animals and humans. This study highlights tanshinone-protein interactions observed at concentrations achievable in vivo, ensuring greater physiological relevance compared to in vitro studies that often employ supraphysiological ligand levels. Experimental data suggest that while tanshinones interact with multiple proteomic targets, only a few enzymes are significantly affected at biologically relevant concentrations. This apparent paradox may be resolved by tanshinones' ability to bind DNA and influence enzymes involved in gene expression or mRNA stability, such as RNA polymerase II and human antigen R protein. These interactions trigger secondary, widespread changes in gene expression, leading to complex proteomic alterations. Although the current understanding of tanshinone-protein interactions remains incomplete, this study provides a foundation for deciphering the molecular mechanisms underlying the therapeutic effects of S. miltiorrhiza diterpenes. Additionally, numerous tanshinone derivatives have been developed to enhance pharmacokinetic properties and biological activity. However, their safety profiles remain poorly characterized, limiting comprehensive insights into their medicinal potential. Further investigation is essential to fully elucidate the therapeutic and toxicological properties of both native and modified tanshinones.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Małgorzata Majewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Jadwiga Nowak
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| |
Collapse
|
2
|
Feng J, Jiang Y, Liu S, Deng L, Lv Y, Chen N, Han S. KIT-SNAP-tag/cell membrane chromatography model coupled with liquid chromatography-mass spectrometry for anti-GIST compound screening from Evodia rutaecarpa. Anal Bioanal Chem 2024; 416:1457-1468. [PMID: 38231254 DOI: 10.1007/s00216-024-05148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.
Collapse
Affiliation(s)
- Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Sihan Liu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Linge Deng
- Health Science Center, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China
| | - Nanzheng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277# Yanta West Road, Xi'an, 710061, China.
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China.
- Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
3
|
Zhang J, Xu D, Deng Z, Tan X, Guo D, Qiao Y, Li Y, Hou X, Wang S, Zhang J. Using tungsten oxide quantum-dot enhanced electrochemiluminescence to measure thrombin activity and screen its inhibitors. Talanta 2024; 267:125267. [PMID: 37801928 DOI: 10.1016/j.talanta.2023.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
A thrombin-activity-based electrochemiluminescence (ECL) biosensor was successfully constructed using tungsten oxide quantum dots (WO3-x QDS) as the co-reactant and thrombin-cleavable peptides as the recognizer. Specifically, Ru(bpy)32+ were doped on silica nanoparticles (Ru@SiO2), which greatly enhanced the ECL potential. AuNPs@WO3-x QDs composite was then prepared to accelerate electron transfer and improve the ECL signal by 219 times. Under ideal conditions, the limit of detection for thrombin in serum was determined to be 0.28 μU/mL with a linear range from 1 μU/mL to 1 U/mL. In addition, the developed ECL biosensor was used to screen for thrombin inhibitors from 12 compounds in Artemisiae Argyi Folium. Among the compounds tested, it was observed that 100 μmol/L luteolin exhibited a significantly higher inhibition rate (exceeding 80%) compared to apigenin, isorhamnetin, naringin, or eriodictyol. In an in-vitro anticoagulation experiment, luteolin (100 μmol/L) prolonged APTT by 49%, and the molecular docking assay indicated that luteolin had binding sites of Gly219 and Asp189 in the active pockets of thrombin. This may have been the main reason underpinning luteolin's anticoagulation effects. Overall, the Ru@WO3-x QDS ECL biosensor provided a reliable strategy for thrombin activity assay and screening of anticoagulant agents.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - You Li
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Wei B, Sun C, Wan H, Shou Q, Han B, Sheng M, Li L, Kai G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116697. [PMID: 37295577 DOI: 10.1016/j.jep.2023.116697] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (SM) is an outstanding herbal medicine with various traditional effects, especially promoting blood circulation to remove blood stasis. It has been widely used for centuries to treat blood stasis syndrome (BSS)-related diseases. BSS is one of the basic pathological syndromes of diseases such as cardiovascular and cerebrovascular diseases in traditional East Asian medicine, which is characterized by disturbance of blood circulation. However, the bioactive components and mechanisms of SM in the treatment of BSS have not been systematically reviewed. Therefore, this article outlines the anti-BSS effects of bioactive components of SM, concentrating on the molecular mechanisms. AIM OF THE REVIEW To summarize the bioactive components of SM against BSS and highlight its potential targets and signaling pathways, hoping to provide a modern biomedical perspective to understand the efficacy of SM on enhancing blood circulation to remove blood stasis. MATERIALS AND METHODS A comprehensive literature search was performed to retrieve articles published in the last two decades on bioactive components of SM used for BSS treatment from the online electronic medical literature database (PubMed). RESULTS Phenolic acids and tanshinones in SM are the main bioactive components in the treatment of BSS, including but not limited to salvianolic acid B, tanshinone IIA, salvianolic acid A, cryptotanshinone, Danshensu, dihydrotanshinone, rosmarinic acid, protocatechuic aldehyde, and caffeic acid. They protect vascular endothelial cells by alleviating oxidative stress and inflammatory damage and regulating of NO/ET-1 levels. They also enhance anticoagulant and fibrinolytic capacity, inhibit platelet activation and aggregation, and dilate blood vessels. Moreover, lowering blood lipids and improving blood rheological properties may be the underlying mechanisms of their anti-BSS. More notably, these compounds play an anti-BSS role by mediating multiple signaling pathways such as Nrf2/HO-1, TLR4/MyD88/NF-κB, PI3K/Akt/eNOS, MAPKs (p38, ERK, and JNK), and Ca2+/K+ channels. CONCLUSIONS Both phenolic acids and tanshinones in SM may act synergistically to target different signaling pathways to achieve the effect of promoting blood circulation.
Collapse
Affiliation(s)
- Baoyu Wei
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Haitong Wan
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Qiyang Shou
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Bing Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Miaomiao Sheng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| | - Liqing Li
- Huzhou Central Hospital, Huzhou, Zhejiang, 31300, PR China.
| | - Guoyin Kai
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, PR China.
| |
Collapse
|
5
|
Deng Z, Tan X, Guo D, Zhang J, Xu D, Hou X, Wang S, Zhang J, Wei F, Zhang D. MXene-sensitized electrochemiluminescence sensor for thrombin activity detection and inhibitor screening. Mikrochim Acta 2023; 190:328. [PMID: 37495854 DOI: 10.1007/s00604-023-05906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Thrombin, a crucial enzyme involved in blood coagulation and associated diseases, requires accurate detection of its activity and screening of inhibitors for clinical diagnosis and drug discovery. To address this, an electrochemiluminescence (ECL) method was developed to detect thrombin activity based on the sensitization of Ti3C2Tx MXene, which could sensitize the Ru(bpy)32+ ECL system greatly. The thrombin-cleavable substrate bio-S-G-R-P-V-L-G-C was used as recognizer to evaluate the activity of thrombin. Under the optimal conditions, the limit of detection for thrombin in serum was 83 pU/mL (S/N = 3) with a linear range from 0.1 nU/mL to 1 µU/mL. Moreover, the developed ECL biosensor was employed to screen for thrombin inhibitors from Artemisiae argyi Folium. Four potential thrombin inhibitors (isoquercitrin, nepetin, L-camphor, L-borneol) were screened out with inhibition rates beyond 50%, among which isoquercitrin had the best inhibition rate of 90.26%. Isoquercitrin and nepetin were found to be competitive inhibitors of thrombin, with [Formula: see text] values of 0.91 μM and 2.18 μM, respectively. Molecular docking results showed that these compounds could interact with the active sites of thrombin through hydrogen bonds including ASP189, SER195, GLY216, and GLY219. The electrochemical biosensor constructed provides a new idea for the detection of thrombin activity and screening of its inhibitors.
Collapse
Affiliation(s)
- Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xueping Tan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Jing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dan Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China.
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China.
| | - Junbo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Fen Wei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi'an, 710061, China
| |
Collapse
|
6
|
Jeanroy F, Demontrond F, Vidal FX, Gueyrard D, Vidal S, Demesmay C, Dugas V. Deciphering dynamic combinatorial libraries of glycoclusters with miniaturized weak affinity chromatography coupled with mass spectrometry (nano-FAC-MS). Anal Chim Acta 2023; 1261:341227. [PMID: 37147058 DOI: 10.1016/j.aca.2023.341227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
We report an original methodology based on affinity chromatography coupled with mass spectrometry to decipher the complexity of dynamic combinatorial libraries (DCLs) of glycoclusters. Such libraries are intended to boost the design of potential therapeutic anti-infectious agents targeting Pseudomonas aeruginosa, which is responsible for numerous diseases, mostly found in hospitals as major a cause of nosocomial infections. Dynamic combinatorial chemistry provides a rapid access to an equilibrating mixture of glycocluster candidates through the formation of reversible covalent bonds under thermodynamic control. Identifying each molecule in the complex mixture overcomes challenges due to the dynamic process. Selection of glycoclusters candidates was first realized on a model lectin (Concanavalin A, ConA). Home-made affinity nanocolumns, containing covalently immobilized ConA and have volumes in the microliter range, were used to separate DCLs of glycoclusters with respect to their specific lectin binding properties under buffered aqueous conditions. Miniaturization facilitates the inline coupling with MS detection in such purely aqueous and buffered conditions and reduces target protein consumption. Monolithic lectin-affinity columns prepared by immobilization of ConA were first characterized using a known ligand. The amount of active binding immobilized lectin is 61 ± 5 pmol on 8.5-cm length column. We demonstrated the ability of our approach to evaluate individual dissociation constants of species directly in the complex mixture. The concept was then successfully applied to the screening of DCLs of more complex glycoclusters to identify (by mass spectrometry) and rank the ligands (by relative breakthrough curve delay) according to their affinity for the immobilized lectin in a single experiment.
Collapse
Affiliation(s)
- Frédéric Jeanroy
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
| | - Fanny Demontrond
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, 69622, France
| | - François-Xavier Vidal
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
| | - David Gueyrard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, 69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, 69622, France; Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, UPR 2301, Gif-sur-Yvette, 91198, France
| | - Claire Demesmay
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France
| | - Vincent Dugas
- Institut des Sciences Analytiques, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5280, 5 rue de la Doua, Villeurbanne, F-69100, France.
| |
Collapse
|
7
|
Three-dimensional ordered macroporous MOF-based smart gating membrane with size screening effect and aptamer specificity for highly efficient thrombin isolation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Luo W, Ye Z, Song D, Ma P. A sensitive electrochemiluminescent sensor chip based on ssDNA-Ru (II) complex and aptamer for the determination of thrombin. LUMINESCENCE 2022; 37:980-986. [PMID: 35411721 DOI: 10.1002/bio.4248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
In this work, an electrochemiluminescence (ECL) sensor chip for sensitive detection of thrombin (TB) was prepared using a screen-printed electrode (SPE) as a working electrode and an aptamer as a specific recognition moiety. To produce an ECL sensor chip, a layer of pL-Cys was immobilized on the surface of SPE by the cyclic voltammetry scanning method, a layer of AuNPs was assembled through an Au-S bond and hairpin DNA was further immobilized on the electrode surface. Ru (bpy)2 (mcpbpy)2+ , as a luminescent reagent, was covalently bound to ssDNA to prepare a luminescent probe ssDNA-Ru. The probe hybridized with TB aptamer to form a capture probe. In the presence of TB, the TB aptamer in the capture probe bound to TB, causing the release of ssDNA-Ru that could bind to hairpin DNA on the electrode surface. Ru (II) complex as a luminescent reagent was assembled onto the electrode, and pL-Cys was used as a co-reactant to. enhance the ECL efficiency. The ECL signal of the sensor chip generated based on the above principles had a linear relationship with log TB concentration at a range of 10 fM-1 nM, and the detection limit was 0.2 fM. Finally, TB detection by this method was verified using real blood samples. This work provides a new method using an aptamer as a foundation and SPE as a material for the detection of biological substances.
Collapse
Affiliation(s)
- Weiwei Luo
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China.,School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
9
|
Qiao Y, Shi Y, Wu C, Hou X, Pan X, Deng Z, Wang S. Rapid screening and identification of anticoagulation component from carthami flos by two-dimensional thrombin affinity chromatography combined with HPLC-MS/MS. J Sep Sci 2021; 44:3061-3069. [PMID: 34110096 DOI: 10.1002/jssc.202100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Carthami flos, commonly known as Honghua in China, is the dried floret of safflower and widely acknowledged as a blood stasis promoting herb. The study aimed at investigating the relationship between thrombin and carthami flos through a high-performance thrombin affinity chromatography combined with a high-performance liquid chromatography-tandem mass spectrometry system. First, thrombin was immobilized on the glutaraldehyde-modified amino silica gel to prepare the thrombin affinity stationary phase, which was packed into a small column (1.0 × 2.0 mm, id) for recognizing the anticoagulant active components of carthami flos. The target component was enriched and analyzed by the high-performance liquid chromatography-tandem mass spectrometry system. Finally, hydroxysafflor yellow A was screened out and identified as the active component. The anticoagulant effects of hydroxysafflor yellow A were analyzed by anticoagulant experiments in vitro, and the interaction of hydroxysafflor yellow A with thrombin was investigated by the molecular docking method. The results proved that hydroxysafflor yellow A (30 μg/mL, 0.05 mM) and carthami flos extract (30 μg/mL) could prolong activated partial thrombin time and thrombin time by 50 and 11%, respectively. Moreover, hydroxysafflor yellow A exhibits a good hydrogen bond field and stereo field matching with thrombin. Overall, it was concluded that hydroxysafflor yellow A might exert an anticoagulation effect by interacting with thrombin and thus could be potential anticoagulant drugs for the prevention and treatment of venous thrombosis.
Collapse
Affiliation(s)
- Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Yingdi Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Chen Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, P. R. China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| |
Collapse
|
10
|
Zhang L, Yi X, Wang S, Liang P, Zhou H, Fu J, Jia Q, Gao J, Lv Y, Han S. Construction of graphene quantum dots-decorated EGFR cell membrane chromatography for screening active components from Peucedanum praeruptorum Dunn. Anal Bioanal Chem 2021; 413:1917-1927. [PMID: 33506335 DOI: 10.1007/s00216-021-03161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.
Collapse
Affiliation(s)
- Liyang Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Xinyao Yi
- School of Basic Medical Science, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Saisai Wang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Peida Liang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Huaxin Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Jia Fu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Jiapan Gao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China.,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an, 710115, Shaanxi, China.
| |
Collapse
|
11
|
Huang Q, Gao Q, Chai X, Ren W, Zhang G, Kong Y, Zhang Y, Gao J, Lei X, Ma L. A novel thrombin inhibitory peptide discovered from leech using affinity chromatography combined with ultra-high performance liquid chromatography-high resolution mass spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1151:122153. [PMID: 32512533 DOI: 10.1016/j.jchromb.2020.122153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
Thrombin (THR) inhibitors play an important role in the treatment of thrombotic diseases. This study established a THR-based bio-specific extraction coupled with affinity chromatography and ultra-high performance liquid chromatography-high resolution mass spectroscopy (UPLC-HR-MS) analysis method to screen and identify THR ligands in Leech. After evaluating the reliability of the screening method using positive control drug (hirudin), it was successfully used to screen the potential active constituents in leech. And a comprehensive analysis of the peptides in leech elution was performed by UPLC-HR-MS, a total of 34 peptides were identified. At the same time, anti-THR activity was explored and inferred by searching databases and published literature. As a result, six peptides were discovered to be potential active compounds in leech. Further, the six peptides were synthesized and in vitro enzymatic activity assay was performed. Finally, SYELPDGQVITIGNER was screened as an anti-THR peptide with an IC50 value of 255.75 µM and it was discovered for the first time from Whitmania pigra Whitman and Hirudo nipponica Whitman. The molecular docking study showed that THR inhibitory activity of the polypeptide was mainly attributed to the hydrogen bond interactions, van der Waals forces and electrostatic interactions interaction between polypeptide and THR. These results suggest that the polypeptide is a potential natural THR inhibitor that can be used as anticoagulant.
Collapse
Affiliation(s)
- Qiuyang Huang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Qian Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xiaoxin Chai
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wei Ren
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yingjun Kong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiongxin Lei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|