1
|
Amir Hamzah K, Turner N, Nichols D, Ney LJ. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. MASS SPECTROMETRY REVIEWS 2025; 44:513-538. [PMID: 38958096 PMCID: PMC11976382 DOI: 10.1002/mas.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Department of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Natalie Turner
- The Centre for Children's Health ResearchQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - David Nichols
- Central Science Laboratory, Science and EngineeringUniversity of TasmaniaHobartTasmaniaAustralia
| | - Luke J. Ney
- School of Psychology and Counselling, Department of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| |
Collapse
|
2
|
Dziurkowska E, Guz-Rzeniecka G, Dziurkowski M. Determination of Cortisol Levels in a Small Volume of Saliva of COVID-19-Recovering Patients During Treatment with Psychotropic Drugs. Biomedicines 2025; 13:697. [PMID: 40149673 PMCID: PMC11940299 DOI: 10.3390/biomedicines13030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cortisol levels are increased in stressful situations but can also result from a history of COVID-19 infection. Long-term exposure to high cortisol levels has a destructive effect on the CNS (Central Nervous System) and can lead to depression, among other things. The most commonly used psychotropic drugs reduce cortisol concentrations. Methods: The aim of our study was to develop an analytical method to determine the level of the hormone in a small volume of saliva (200 µL) in COVID-19 patients using CNS-active drugs. Solid-phase extraction was used to isolate the analyte, and the determination was performed by liquid chromatography with a diode array detector (LC with DAD). Results: The developed method was validated. Its linearity was determined to be in the range of 4-500 ng/mL (R2 > 0.9986) and the intra- and inter-day precision expressed as coefficient of variation (CV%) did not exceed 12%. The method was then applied to determine cortisol levels in the saliva of post-COVID-19-recovered patients and healthy volunteers. The determined cortisol levels were 12.24 ± 7.33 ng/mL in the recovered patients and 4.11 ± 1.46 ng/mL in the healthy subjects, respectively. A comparison of the results showed that cortisol levels in the recovered patients and healthy volunteers were significantly different statistically. Conclusions: The developed method allowed for the determination of cortisol in a small volume of saliva. Comparison of cortisol concentration in healthy individuals and COVID-19 recoveries indicates that the hormone level in both groups significantly differed statistically, and the psychotropic drugs used did not reduce cortisol concentration in COVID-19 patients. The results obtained indicate that the psychotropic drugs used did not reduce cortisol concentrations in COVID-19 patients.
Collapse
Affiliation(s)
- Ewelina Dziurkowska
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Grażyna Guz-Rzeniecka
- Hospital for Nervous and Mental Diseases, Skarszewska 7, 83-200 Starogard Gdanski, Poland; (G.G.-R.); (M.D.)
| | - Maciej Dziurkowski
- Hospital for Nervous and Mental Diseases, Skarszewska 7, 83-200 Starogard Gdanski, Poland; (G.G.-R.); (M.D.)
| |
Collapse
|
3
|
Jarvis M, Hamzah KA, Nichols D, Ney LJ. Hair and Saliva Endocannabinoid and Steroid Hormone Analysis by Liquid Chromatography Paired with Tandem Mass Spectrometry. Methods Mol Biol 2025; 2868:135-147. [PMID: 39546229 DOI: 10.1007/978-1-0716-4200-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Endocannabinoids are lipid neurotransmitters that play an important part in human health. Recent methods have found that quantification of endocannabinoids in hair and saliva samples is possible using liquid chromatography paired with tandem mass spectrometry (LC-MS/MS). This chapter describes two simple sample preparation methods that can be used to prepare hair and saliva samples for analysis using LC-MS/MS. Our LC-MS/MS method can be applied to both hair and saliva samples and is sufficiently sensitive for endocannabinoid, as well as steroid hormone, quantification in both of these sample matrices. This chapter provides a comprehensive description of how this can be achieved and provides tips and tricks for troubleshooting problems users may experience.
Collapse
Affiliation(s)
- Madeline Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
4
|
Ferger MD, Sigrist C, Brodesser S, Kaess M, Koenig J. Alterations of the endocannabinoid system in adolescents with non-suicidal self-injury as a function of childhood maltreatment. Transl Psychiatry 2024; 14:491. [PMID: 39695136 DOI: 10.1038/s41398-024-03205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Non-suicidal self-injury (NSSI) is a highly prevalent phenomenon in adolescence, often associated with prior traumatic experiences. The development and maintenance of NSSI is associated with dysregulation of the stress response, and evidence suggests that the hypothalamic-pituitary-adrenal (HPA) axis plays an important role. The endocannabinoid system is a neuromodulatory system in close functional interaction with the HPA axis. Several studies have reported alterations of the endocannabinoid system in adult patients with post-traumatic stress disorder. However, the role of the endocannabinoid system in children and adolescents with NSSI is less clear, and previously no study examined endocannabinoids in youth with experiences of maltreatment. N-arachidonyl ethanolamide (AEA) and 2-arachidonyl glycerol (2-AG) were quantified alongside sociodemographic and clinical characteristics in n = 148 adolescents (12-17 years of age). Analyses addressed group differences comparing healthy controls (HC, n = 38), patients with NSSI without (NSSI - CMT, n = 42) and with a history of childhood maltreatment (NSSI + CMT, n = 68). We show that AEA is reduced in adolescents with NSSI independent of childhood maltreatment. Further, we present first evidence for a negative association between AEA and NSSI frequency as well as AEA and the severity of childhood maltreatment. This is the first study providing evidence for alterations in the endocannabinoid system in children and adolescents engaging in repetitive NSSI. Findings from the study support current endocannabinoid-hypotheses on the neurobiology of trauma and adversity, extending existing findings of altered endocannabinoid signaling following exposure to traumatic events to a well-powered sample of children and adolescents.
Collapse
Affiliation(s)
- Marc D Ferger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christine Sigrist
- Department of General Psychiatry, Centre for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Michael Kaess
- Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany.
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Lam GN, Cooper J, Lipp OV, Mayo LM, Ney L. Exploration of stress reactivity and fear conditioning on intrusive memory frequency in a conditioned-intrusion paradigm. J Behav Ther Exp Psychiatry 2024; 85:101984. [PMID: 39116644 DOI: 10.1016/j.jbtep.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND OBJECTIVES The conditioned-intrusion paradigm was designed to provide insight into the relationship between fear conditioning and intrusive memory formation, which is relevant to understanding posttraumatic stress disorder symptoms and treatment. However, boundary conditions of this new paradigm have not been explored and it is currently not known whether findings from this work are valid in a clinical context. METHODS In the current study, we explored the relationship between stress reactivity to trauma film clips, usual exposure to violent media, renewal of fear conditioning using skin conductance as well as subjective ratings, and the effect of shock versus film clip during conditioning on the frequency of intrusive memories. An adapted fear conditioning paradigm using trauma clips as unconditional stimuli was used, and participants subsequently reported intrusive memories of the trauma clips. RESULTS Skin conductance responses to conditioned stimuli paired with shocks and film clips were significantly higher than conditioned stimuli paired with film clips alone. Subjective stress reactivity, previous exposure to violent media, and film valence rating were associated with the frequency of intrusive memories. No aspects of fear conditioning were associated with intrusive memories, and factor analysis suggested the fear conditioning and stress related to film clip viewing were mostly separate constructs. Similarly, content and triggers of intrusive memories were usually film-clip related rather than conditional stimulus related. LIMITATIONS We did not observe strong conditioning effects of the unconditional stimuli to conditional stimuli, which were shapes rather than high frequency stimuli such as faces. CONCLUSIONS These findings provide potential boundary conditions for this paradigm and suggest multiple ways in which the validity of the paradigm can be tested in the future.
Collapse
Affiliation(s)
- Gia Nhi Lam
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Jack Cooper
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Ottmar V Lipp
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Leah M Mayo
- Department of Psychiatry, Mathison Centre for Mental Health Research, and Hotchkiss Brain Institute, University of Calgary, Canada
| | - Luke Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
6
|
Amir Hamzah K, Toms LM, Kucharski N, Orr J, Hobson P, Nichols DS, Ney LJ. Age and sex effects of a validated LC-MS/MS method for the simultaneous quantification of testosterone, allopregnanolone, and its isomers in human serum. Sci Rep 2024; 14:27777. [PMID: 39537691 PMCID: PMC11561161 DOI: 10.1038/s41598-024-78807-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the great relevance of the neurosteroid allopregnanolone and related isomers to various health conditions, quantification typically involves immunoassay, which suffers from serious issues with cross-reactivity of closely related molecules. This article describes the development and partial validation of a liquid chromatography coupled with tandem mass spectrometry assay for the simultaneous quantification of allopregnanolone, pregnanolone, isopregnanolone, epi-allopregnanolone, and testosterone in the human serum of healthy males and females aged 5-85 years. 1-amino-4-methylpiperazine (AMP) was used as a derivatisation reagent to enhance the ionisation signal. Linearity was calculated at 0.99 with a lower limit of quantification of 10.08 pg/mL for allopregnanolone, along with a linearity of 0.98 and a lower limit of quantification of 42.32 pg/mL for testosterone. Application of the method showed sex and age effects across the lifespan for both allopregnanolone and testosterone, whereas a comparative immunoassay for allopregnanolone was not able to detect differences in the same samples. Our partial validation of this method should provide a new tool for researchers to discover the role of allopregnanolone and its isomers in human health, and how it compares to testosterone and sex hormones.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia.
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Nathaniel Kucharski
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Julia Orr
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
| | - Peter Hobson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
- Sullivan and Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD, 4006, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia
| |
Collapse
|
7
|
Gowatch LC, Evanski JM, Ely SL, Zundel CG, Bhogal A, Carpenter C, Shampine MM, O'Mara E, Mazurka R, Barcelona J, Mayo LM, Marusak HA. Endocannabinoids and Stress-Related Neurospsychiatric Disorders: A Systematic Review and Meta-Analysis of Basal Concentrations and Response to Acute Psychosocial Stress. Cannabis Cannabinoid Res 2024; 9:1217-1234. [PMID: 38683635 PMCID: PMC11535454 DOI: 10.1089/can.2023.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Dysregulation of the endocannabinoid (eCB) system is implicated in various stress-related neuropsychiatric disorders (SRDs), including anxiety, depression, and post-traumatic stress disorder (PTSD). In this systematic review and meta-analysis, our objectives were to characterize circulating anandamide (AEA) and 2-arachidonoylglycerol (2-AG) concentrations at rest and in response to acute laboratory-based psychosocial stress in individuals with SRDs and without (controls). Our primary aims were to assess the effects of acute psychosocial stress on eCB concentrations in controls (Aim 1), compare baseline (prestress) eCB concentrations between individuals with SRDs and controls (Aim 2), and explore differential eCB responses to acute psychosocial stress in individuals with SRDs compared with controls (Aim 3). Methods: On June 8, 2023, a comprehensive review of the MEDLINE (PubMed) database was conducted to identify original articles meeting inclusion criteria. A total of 1072, 1341, and 400 articles were screened for inclusion in Aims 1, 2, and 3, respectively. Results: Aim 1, comprised of seven studies in controls, revealed that most studies reported stress-related increases in AEA (86%, with 43% reporting statistical significance) and 2-AG (83%, though none were statistically significant except for one study in saliva). However, meta-analyses did not support these patterns (p's>0.05). Aim 2, with 20 studies, revealed that most studies reported higher baseline concentrations of both AEA (63%, with 16% reporting statistical significance) and 2-AG (60%, with 10% reporting statistical significance) in individuals with SRDs compared with controls. Meta-analyses confirmed these findings (p's<0.05). Aim 3, which included three studies, had only one study that reported statistically different stress-related changes in 2-AG (but not AEA) between individuals with PTSD (decrease) and controls (increase), which was supported by the meta-analysis (p<0.001). Meta-analyses showed heterogeneity across studies and aims (I2=14-97%). Conclusion: Despite substantial heterogeneity in study characteristics, samples, and methodologies, consistent patterns emerged, including elevated baseline AEA and 2-AG in individuals with SRDs compared with controls, as well as smaller stress-related increases in 2-AG in individuals with SRDs compared with controls. To consider eCBs as reliable biomarkers and potential intervention targets for SRDs, standardized research approaches are needed to clarify the complex relationships between eCBs, SRDs, and psychosocial stress.
Collapse
Affiliation(s)
- Leah C. Gowatch
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Julia M. Evanski
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha L. Ely
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
| | - Clara G. Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Amanpreet Bhogal
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Carmen Carpenter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - MacKenna M. Shampine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Emilie O'Mara
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Jeanne Barcelona
- Center for Health and Community Impact, College of Education, Wayne State University, Detroit, Michigan, USA
| | - Leah M. Mayo
- Hotchkiss Brain Institute and Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
- Translational Neuroscience PhD Program, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Myers MN, Chirivi M, Gandy JC, Tam J, Zachut M, Contreras GA. Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes. J Anim Sci Biotechnol 2024; 15:103. [PMID: 39095900 PMCID: PMC11297689 DOI: 10.1186/s40104-024-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components. RESULTS We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3. CONCLUSIONS Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeff C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization Volcani Institute, Rishon LeZion, 7505101, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Ezechukwu HC, Ney LJ, Jarvis MA, Shrestha N, Holland OJ, Cuffe JSM, Perkins AV, Yau SY, McAinch AJ, Hryciw DH. Sex-Specific Changes to Brain Fatty Acids, Plasmalogen, and Plasma Endocannabinoids in Offspring Exposed to Maternal and Postnatal High-Linoleic-Acid Diets. Int J Mol Sci 2024; 25:7911. [PMID: 39063152 PMCID: PMC11277558 DOI: 10.3390/ijms25147911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.
Collapse
Affiliation(s)
- Henry C. Ezechukwu
- School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia;
| | - Luke J. Ney
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (L.J.N.); (M.A.J.)
| | - Madeline A. Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia; (L.J.N.); (M.A.J.)
| | - Nirajan Shrestha
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - Olivia J. Holland
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Anthony V. Perkins
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia; (N.S.); (O.J.H.); (A.V.P.)
- School of Health, University of Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong;
- Mental Health Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, VIC 3021, Australia
| | - Deanne H. Hryciw
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
10
|
O'Donohue MP, Amir Hamzah K, Nichols D, Ney LJ. Trauma film viewing and intrusive memories: Relationship between salivary alpha amylase, endocannabinoids, and cortisol. Psychoneuroendocrinology 2024; 164:107007. [PMID: 38503195 DOI: 10.1016/j.psyneuen.2024.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.
Collapse
Affiliation(s)
- Matthew P O'Donohue
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Australia.
| |
Collapse
|
11
|
Qian X, Liu W, Chen Y, Zhang J, Jiang Y, Pan L, Hu C. A UPLC-MS/MS method for simultaneous determination of arachidonic acid, stearic acid, and related endocannabinoids in human plasma. Heliyon 2024; 10:e28467. [PMID: 38560270 PMCID: PMC10979285 DOI: 10.1016/j.heliyon.2024.e28467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Endocannabinoids (eCBs) exert considerable influence over energy metabolism, lipid metabolism, and glucose metabolism within the human body. Among the most biologically active cannabinoids identified thus far are 2-arachidonoylglycerol (2-AG), arachidonoyl ethanolamide (AEA), 1-stearoylglycerol (1-SRG), and stearoyl ethanolamide (SEA), which are derived from arachidonic acid (AA) and stearic acid (SA). However, despite the unique in bioactivities exhibited by eCBs, their determination in plasma has been hindered by the lack of sensitive analytical methods. The aim of this study was to develop and validate a highly sensitive and rapid method using ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for accurate measurement of AEA, SEA, 2-AG, 1-SRG, AA, and SA levels in human plasma samples. Sample preparation involved a protein precipitation method and a methyl tert-butyl ether liquid-liquid extraction method. Chromatographic separation was accomplished by utilizing an ACQUITY UPLC BEH C8 column with a mobile phase of acetonitrile containing 0.1% formic acid and water containing 0.1% formic acid, flowing at a rate of 0.35 mL/min. AA-d8, 2-AG-d5, and AEA-d8 were selected as deuterated internal standards. The analytes were determined with MRM in both positive and negative ion mode. The lower limit of quantification ranged from 0.1 to 400 ng/mL, and the correlation coefficient (R2) was >0.99. Inter-day and intra-day precision exhibited values of 0.55-13.29% and 0.62%-13.90%, respectively. Recovery and matrix effect were within the range of 77.7%-109.7%, and 90.0%-113.5%, respectively. Stability tests confirmed the acceptability of all analytes. To demonstrate the effectiveness of the approach, it was implemented to assess and compare plasma samples from healthy volunteers (n = 49) and individuals with non-alcoholic fatty liver disease (NAFLD) (n = 62). The study revealed significant differences in AEA, SEA, AA, and SA levels between the two groups.
Collapse
Affiliation(s)
- Xiaojing Qian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wangzhenzu Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Chen
- Shanghai TCM-Integrated Hospital Afliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lingyun Pan
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
12
|
Amir Hamzah K, Toms LM, Kucharski N, Orr J, Turner NP, Hobson P, Nichols DS, Ney LJ. Sex-dimorphism in human serum endocannabinoid and n-acyl ethanolamine concentrations across the lifespan. Sci Rep 2023; 13:23059. [PMID: 38155287 PMCID: PMC10754838 DOI: 10.1038/s41598-023-50426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
The endocannabinoid (ECB) system has recently been considered a potential treatment target for various clinical disorders. However, research around age- and sex-related changes within the ECB system is relatively limited. To improve our understanding of these changes, the current study measured arachidonoyl ethanolamide (AEA), 2-arachidonoyl glycerol (2-AG), oleoylethanolamine (OEA), palmitoylethanolamine (PEA), arachidonic acid (AA), cortisol, and progesterone in pooled serum samples stratified by sex (male and female) and age groups (5-15; 15-30; 30-45; 45-60; 60-75; 85+), using liquid-chromatography tandem mass spectrometry. Serum progesterone levels significantly increased in females of the 15-30 and 30-45 age groups, before declining. Significantly higher cortisol, AEA, 2-AG, OEA, and PEA were found in males and in older age, while significantly higher AA was found in females. Our results indicate that ECBs and related hormones exhibit sexual dimorphism in the age ranges that correspond with female pregnancy, menopause, and post menopause. Male testosterone levels most likely influences male ECB changes throughout the lifespan. Future research could capitalise on these findings by performing repeated measurements in individuals in a longitudinal style, to further refine the temporal profile of age-specific changes to the ECB system identified here.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia.
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Nathaniel Kucharski
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Julia Orr
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
| | - Natalie P Turner
- The Centre for Children's Health Research (CCHR), Queensland University of Technology, 62 Graham Street, South Brisbane, QLD, 4101, Australia
| | - Peter Hobson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
- Sullivan and Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD, 4006, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Sydney, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia
| |
Collapse
|
13
|
Woźniczka K, Konieczyński P, Plenis A, Bączek T, Roszkowska A. SPME as a green sample-preparation technique for the monitoring of phytocannabinoids and endocannabinoids in complex matrices. J Pharm Anal 2023; 13:1117-1134. [PMID: 38024858 PMCID: PMC10657972 DOI: 10.1016/j.jpha.2023.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
The endocannabinoid system (ECS), particularly its signaling pathways and ligands, has garnered considerable interest in recent years. Along with clinical work investigating the ECS' functions, including its role in the development of neurological and inflammatory conditions, much research has focused on developing analytical protocols enabling the precise monitoring of the levels and metabolism of the most potent ECS ligands: exogenous phytocannabinoids (PCs) and endogenous cannabinoids (endocannabinoids, ECs). Solid-phase microextraction (SPME) is an advanced, non-exhaustive sample-preparation technique that facilitates the precise and efficient isolation of trace amounts of analytes, thus making it appealing for the analysis of PCs and ECs in complex matrices of plant and animal/human origin. In this paper, we review recent forensic medicine and toxicological studies wherein SPME has been applied to monitor levels of PCs and ECs in complex matrices, determine their effects on organism physiology, and assess their role in the development of several diseases.
Collapse
Affiliation(s)
- Katarzyna Woźniczka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Konieczyński
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
14
|
Ney LJ, Nichols DS, Lipp OV. Fear conditioning depends on the nature of the unconditional stimulus and may be related to hair levels of endocannabinoids. Psychophysiology 2023; 60:e14297. [PMID: 36959707 PMCID: PMC10909444 DOI: 10.1111/psyp.14297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The replicability of fear conditioning research has come under recent scrutiny, with increasing acknowledgment that the use of differing materials and methods may lead to incongruent results. Direct comparisons between the main two unconditional stimuli used in fear conditioning - an electric shock or a loud scream-are scarce, and yet these stimuli are usually used interchangeably. In the present study, we tested whether a scream, a shock, or an unpredictable combination of the two affected fear acquisition, extinction, and return of fear amongst healthy participants (N = 109, 81 female). We also collected hair samples and tested the relationship between fear conditioning and hair endocannabinoid levels. Our findings suggest that, although subjective ratings of pleasantness, arousal, and anxiety were similar regardless of the unconditional stimuli used, skin conductance responses were significantly lower for stimuli paired with the scream compared to a shock alone. Further, reducing the predictability of the unconditional stimulus reduced habituation of skin conductance responses during acquisition and reacquisition, but did not produce stronger conditioning compared to shock alone. Exploratory analyses suggested that hair endocannabinoids were associated with overall physiological arousal during fear conditioning, as well as higher return of fear to the threat cue, but not to the safety cue. These findings have multiple implications for the design and replicability of fear conditioning research and provide the first evidence for an association between hair levels of endocannabinoids and human fear conditioning.
Collapse
Affiliation(s)
- Luke J. Ney
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - David S. Nichols
- Central Science LaboratoryUniversity of TasmaniaHobartTasmaniaAustralia
| | - Ottmar V. Lipp
- School of Psychology and CounsellingQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
15
|
Wu J, Li Z, Chen B. Simultaneous measurement of 19 steroid hormones in dried blood spots using ultra-performance liquid chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2006-2015. [PMID: 37057591 DOI: 10.1039/d2ay02009b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A rapid and accurate ultra-performance liquid chromatography-tandem-mass spectrometry (UPLC-MS/MS) method was developed for the measurement of 19 steroid hormones in dried blood spots and to achieve the highly traceable analysis of steroid hormones in dried blood samples. In this method, a BEH C8 column and UPLC-MS/MS were used for the separation of the steroid hormones. The extraction process was simple and accurate. The distribution ranges of 19 steroid hormones in four healthy individuals (2 males and 2 females) were determined simultaneously by positive ionization mode (ESI+) and negative ionization mode (ESI-) analysis, which were recorded by multiple reaction monitoring (MRM) modes. The linearity of the standard curves of 19 steroid hormones in dried blood spots was good, and the linear correlation coefficients R2 were all ≥0.997. Meanwhile, the matrix effect of the method ranged from 87.1% to 131.3%. Across the analytical range, the inter-assay coefficient of variation (CV) was <12.07% and the intra-assay CV was <18.16%. The spiked recovery was >67.33%. The distribution ranges of 19 steroid hormones in four healthy individuals were in agreement with those in previous reports. A UPLC-MS/MS method for the simultaneous measurement of 19 steroid hormones in dried blood spots was developed to achieve traceable analysis of steroid hormones in dried blood samples.
Collapse
Affiliation(s)
- Jie Wu
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zenghe Li
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Baorong Chen
- Laboratory Diagnosis Department, Beijing Kingmed Diagnostics, Beijing 100103, China.
| |
Collapse
|
16
|
Selahle SK, Nqombolo A, Nomngongo PN. From polyethylene waste bottles to UIO-66 (Zr) for preconcentration of steroid hormones from river water. Sci Rep 2023; 13:6808. [PMID: 37100990 PMCID: PMC10131548 DOI: 10.1038/s41598-023-34031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
Metal-organic framework (UiO-66 (Zr) was synthesized using polyethylene terephthalate (PET) and used as an adsorbent for extraction and preconcentration of steroid hormones in river water. Polyethylene waste bottles were used as the source of polyethylene terephthalate (PET) ligands. The UIO-66(Zr), which the PET was made from recycled waste plastics, was used for the first time for the extraction and preconcentration of four different types of steroid hormones in river water samples. Various analytical characterization techniques were employed to characterize the synthesized material. The steroid hormones were detected and quantified using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). The results were further validated using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables, such as sample pH, the mass of adsorbent and extraction time, were optimized using Box-Behnken design (BBD). The dispersive solid phase extraction method combined with HPLC-DAD, displayed good linearity (0.004-1000 µg/L) low limits of detections (LODs, 1.1-16 ng/L for ultrapure water and 2.6-5.3 ng/L for river water) and limits of quantification (LOQs, 3.7-5.3 ng/L for ultrapure water and 8.7-11.0 ng/L for river water samples) and acceptable extraction recoveries (86-101%). The intraday (n = 10) and interday (n = 5) precisions expressed in terms of relative standard deviations (%RSD) were all less than 5%. The steroid hormones were detected in most of the river water samples (Vaal River and Rietspruit River). The DSPE/HPLC method offered a promising approach for simultaneous extraction, preconcentration and determination of steroid hormones in water.
Collapse
Affiliation(s)
- Shirley Kholofelo Selahle
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Azile Nqombolo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa.
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
17
|
Roszkowska A, Klejbor I, Bogusiewicz J, Plenis A, Bojko B, Kowalik K, Moryś J, Bączek T. Monitoring of age- and gender-related alterations of endocannabinoid levels in selected brain regions with the use of SPME probes. Metabolomics 2023; 19:40. [PMID: 37043024 PMCID: PMC10097736 DOI: 10.1007/s11306-023-02007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
INTRODUCTION The endocannabinoid system consists of different types of receptors, enzymes and endocannabinoids (ECs), which are involved in several physiological processes, but also play important role in the development and progression of central nervous system disorders. OBJECTIVES The purpose of this study was to apply precise and sensitive methodology for monitoring of four ECs, namely anandamide (AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl dopamine (NADA), 2-arachidonyl glyceryl ether (2-AGe) in selected brain regions of female and male rats at different stages of development (young, adult and old). METHODS Biocompatible solid-phase microextraction (SPME) probes were introduced into the intact (non-homogenized) brain structures for isolation of four ECs, and the extracts were subjected to LC-MS/MS analysis. Two chemometric approaches, namely hierarchical cluster analysis (HCA) and Principal Component Analysis (PCA) were applied to provide more information about the levels of 2-AG and AEA in different brain structures. RESULTS 2-AG and AEA were extracted and could be quantified in each brain region; the level of 2-AG was significantly higher in comparison to the level of AEA. Two highly unstable ECs, NADA and 2-AGe, were captured by SPME probes from intact brain samples for the first time. CONCLUSION SPME probes were able to isolate highly unstable endogenous compounds from intact tissue, and provided new tools for precise analysis of the level and distribution of ECs in different brain regions. Monitoring of ECs in brain samples is important not only in physiological conditions, but also may contribute to better understanding of the functioning of the endocannabinoid system in various disorders.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland.
| | - Ilona Klejbor
- Department of Anatomy, Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Alina Plenis
- Department of Analytical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Katarzyna Kowalik
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Janusz Moryś
- Department of Normal Anatomy, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Hamidovic A, Davis J, Soumare F, Datta A, Naveed A. Trajectories of Allopregnanolone and Allopregnanolone to Progesterone Ratio across the Six Subphases of Menstrual Cycle. Biomolecules 2023; 13:biom13040652. [PMID: 37189398 DOI: 10.3390/biom13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Allopregnanolone is one of the most studied neuroactive steroids; yet, despite its relevance to neuropsychiatric research, it is not known how it, as well as its ratio to progesterone, varies across all six subphases of the menstrual cycle. Two enzymes—5α-dihydroprogesterone and 5α-reductase—convert progesterone to allopregnanolone, and, based on immunohistochemical studies in rodents, the activity of 5α-reductase is considered the rate-limiting step in the formation of allopregnanolone. It is not clear, however, whether the same phenomenon is observed across to the menstrual cycle, and, if so, at what point this takes place. Methods: Thirty-seven women completed the study during which they attended eight clinic visits across one menstrual cycle. We analyzed their allopregnanolone and progesterone serum concentrations using ultraperformance liquid chromatography–tandem mass spectrometry, and we implemented a validated method to realign the data from the original eight clinic study visits, following which we imputed the missing data. Hence, we characterized allopregnanolone concentrations, and the ratio of allopregnanolone:progesterone at six menstrual cycle subphases: (1) early follicular, (2) mid-follicular, (3) periovulatory, (4) early luteal, (5) mid-luteal, and (6) late luteal. Results: There were significant differences in allopregnanolone levels between (1) early follicular and early luteal, (2) early follicular and mid-luteal, (3) mid-follicular and mid-luteal, (4) periovulatory and mid-luteal, and (5) mid-luteal and late luteal. We detected a sharp drop in allopregnanolone:progesterone ratio in the early luteal subphase. Within the luteal subphase, the ratio was the lowest in the mid-luteal subphase. Conclusions: Allopregnanolone concentrations are the most distinct, relative to the other subphases, in the mid-luteal subphase. The shape of the allopregnanolone trajectory across the cycle is similar to that of progesterone; however, the proportion of the two neuroactive steroid hormones is drastically different due to enzymatic saturation, which takes place at the start of the early luteal subphase, but continuing through, and peaking, in the mid-luteal subphase. Hence, the estimated activity of 5α-reductase decreases, but does not cease, at any point across the menstrual cycle.
Collapse
Affiliation(s)
- Ajna Hamidovic
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- College of Medicine, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Fatimata Soumare
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Avisek Datta
- School of Public Health, University of Illinois at Chicago, 1603 W. Taylor St., Chicago, IL 60612, USA
| | - Aamina Naveed
- College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| |
Collapse
|
19
|
Hamidovic A, Soumare F, Naveed A, Davis J. Mid-Luteal Progesterone Is Inversely Associated with Premenstrual Food Cravings. Nutrients 2023; 15:nu15051097. [PMID: 36904096 PMCID: PMC10005553 DOI: 10.3390/nu15051097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It is not clear whether progesterone and estradiol associate with premenstrual food cravings, which significantly contribute to cardiometabolic adverse effects associated with obesity. We sought to investigate this question in the present study based on the prior literature showing a protective effect of progesterone on drug craving and extensive neurobiological overlaps between food and drug cravings. We enrolled 37 non-illicit drug- or medication-using women in the study to provide daily ratings of premenstrual food cravings and other symptoms across two-three menstrual cycles, based on which we classified them as premenstrual dysphoric disorder (PMDD) or control participants. In addition, the participants provided blood samples at eight clinic visits across the menstrual cycle. We aligned their mid-luteal progesterone and estradiol using a validated method which relies upon the peak serum luteinizing hormone and analyzed estradiol and progesterone using ultraperformance liquid chromatography tandem mass spectrometry. Hierarchical modeling, adjusted for BMI, showed a significant inverse effect of progesterone (p = 0.038) but no effect of estradiol on premenstrual food cravings. The association was not unique to PMDD or control participants. Results of research to date in humans and rodents showing that progesterone has dampening effects on the salience of the reinforcer translate to premenstrual food cravings.
Collapse
Affiliation(s)
- Ajna Hamidovic
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
- Correspondence:
| | - Fatimata Soumare
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - Aamina Naveed
- Department of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., Chicago, IL 60612, USA
| | - John Davis
- Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| |
Collapse
|
20
|
Applied Clinical Tandem Mass Spectrometry-Based Quantification Methods for Lipid-Derived Biomarkers, Steroids and Cannabinoids: Fit-for-Purpose Validation Methods. Biomolecules 2023; 13:biom13020383. [PMID: 36830753 PMCID: PMC9953102 DOI: 10.3390/biom13020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
The emergence of metabolomics and quantification approaches is revealing new biomarkers applied to drug discovery. In this context, tandem mass spectrometry is the method of choice, requiring a specific validation process for preclinical and clinical applications. Research on the two classes of lipid mediators, steroids and cannabinoids, has revealed a potential interaction in cannabis addiction and metabolism-related disorders. Here we present the development of GC-MS/MS and LC-MS/MS methods for routine quantification of targeted steroids and cannabinoids, respectively. The methods were developed using an isotopic approach, including validation for linearity, selectivity, LLOQ determination, matrix effect, carryover, between- and within-run accuracy and precision, and stability tests to measure 11 steroids and seven cannabinoids in human plasma. These methods were satisfactory for most validity conditions, although not all met the acceptance criteria for all analytes. A comparison of calibration curves in biological and surrogate matrices and in methanol showed that the latter condition was more applicable for our quantification of endogenous compounds. In conclusion, the validation of our methods met the criteria for GLP-qualified rather than GLP-validated methods, which can be used for routine analytical studies for dedicated preclinical and clinical purposes, by combining appropriate system suitability testing, including quality controls in the biological matrix.
Collapse
|
21
|
UHPLC-ESI-MS/MS assay for quantification of endocannabinoids in cerebrospinal fluid using surrogate calibrant and surrogate matrix approaches. J Pharm Biomed Anal 2023; 222:115090. [DOI: 10.1016/j.jpba.2022.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
22
|
Dmitrieva EV, Temerdashev AZ. Determination of Steroid Hormones in Human Saliva by High-Performance Liquid Chromatography with Tandem Mass Spectrometry Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Chafkin JE, O'Brien JM, Medrano FN, Lee HY, Josephs RA, Yeager DS. A dual-system, machine-learning approach reveals how daily pubertal hormones relate to psychological well-being in everyday life. Dev Cogn Neurosci 2022; 58:101158. [PMID: 36368088 PMCID: PMC9650000 DOI: 10.1016/j.dcn.2022.101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 01/13/2023] Open
Abstract
The two studies presented in this paper seek to resolve mixed findings in research linking activity of pubertal hormones to daily adolescent outcomes. In study 1 we used a series of Confirmatory Factor Analyses to compare the fit of one and two-factor models of seven steroid hormones (n = 994 participants, 8084 samples) of the HPA and HPG axes, using data from a field study (https://www.icpsr.umich.edu/web/ICPSR/studies/38180) collected over ten consecutive weekdays in a representative sample of teens starting high school. In study 2, we fit a Bayesian model to our large dataset to explore how hormone activity was related to outcomes that have been demonstrated to be linked to mental health and wellbeing (self-reports of daily affect and stress coping). Results reveal, first that a two-factor solution of adolescent hormones showed good fit to our data, and second, that HPG activity, rather than the more often examined HPA activity, was associated with improved daily affect ratios and stress coping. These findings suggest that field research, when it is combined with powerful statistical techniques, may help to improve our understanding of the relationship between adolescent hormones and daily measures of well-being.
Collapse
Affiliation(s)
- Julia E Chafkin
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
| | - Joseph M O'Brien
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | | | - Robert A Josephs
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - David S Yeager
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Haviv Y, Georgiev O, Gaver-Bracha T, Hamad S, Nemirovski A, Hadar R, Sharav Y, Aframian DJ, Brotman Y, Tam J. Reduced Endocannabinoid Tone in Saliva of Chronic Orofacial Pain Patients. Molecules 2022; 27:molecules27144662. [PMID: 35889535 PMCID: PMC9322033 DOI: 10.3390/molecules27144662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Background: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has not been examined. Objectives: to evaluate the association between salivary (eCBs) levels and chronic OFP. Methods: salivary levels of 2 eCBs, anandamide (AEA), 2-arachidonoylglycerol (2-AG), 2 endocannabinoid-like compoundsN-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), and their endogenous precursor and breakdown product, arachidonic acid (AA), were analyzed using liquid chromatography/tandem mass spectrometry in 83 chronic OFP patients and 43 pain-free controls. The chronic OFP patients were divided according to diagnosis into musculoskeletal, neurovascular/migraine, and neuropathic pain types. Results: chronic OFP patients had lower levels of OEA (p = 0.02) and 2-AG (p = 0.01). Analyzing specific pain types revealed lower levels of AEA and OEA in the neurovascular group (p = 0.04, 0.02, respectively), and 2-AG in the neuropathic group compared to controls (p = 0.05). No significant differences were found between the musculoskeletal pain group and controls. Higher pain intensity was accompanied by lower levels of AA (p = 0.028), in neuropathic group. Conclusions: lower levels of eCBs were found in the saliva of chronic OFP patients compared to controls, specifically those with neurovascular/migraine, and neuropathic pain. The detection of changes in salivary endocannabinoids levels related to OFP adds a new dimension to our understanding of OFP mechanisms, and may have diagnostic as well as therapeutic implications for pain.
Collapse
Affiliation(s)
- Yaron Haviv
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
- Correspondence: ; Tel.: +972-2-677-6140; Fax: +972-2-644-7919
| | - Olga Georgiev
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
- In Partial Fulfillment of DMD Requirements, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Tal Gaver-Bracha
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
- In Partial Fulfillment of DMD Requirements, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Sharleen Hamad
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.H.); (A.N.); (R.H.)
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.H.); (A.N.); (R.H.)
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (S.H.); (A.N.); (R.H.)
| | - Yair Sharav
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
| | - Doron J. Aframian
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba 8410501, Israel;
| | - Joseph Tam
- Department of Oral Medicine, Sedation and Maxillofacial Imaging, Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel; (O.G.); (T.G.-B.); (Y.S.); (D.J.A.); (J.T.)
| |
Collapse
|
25
|
Gish A, Wiart JF, Turpin E, Allorge D, Gaulier JM. État de l’art et intérêt des dosages plasmatiques des substances endocannabinoïdes et endocannabinoïdes-like. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
The effects of acute stress on attentional networks and working memory in females. Physiol Behav 2021; 242:113602. [PMID: 34555409 DOI: 10.1016/j.physbeh.2021.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
Neurobiological models indicate that acute stress facilitates bottom-up stimulus processing while impairing top-down executive control. To test this hypothesis, the present study investigated the effects of acute stress on behavioural and electrophysiological measures of human attentional networks, and behavioural measures of working memory. Forty-five female participants (Mage = 22.1, SD = 2.4) performed the Attention Network Test (ANT) and the n-back task before and after the Maastricht Acute Stress Test (MAST; n = 23) or a non-stressful MAST-placebo (n = 22). Subjective distress ratings and salivary cortisol concentrations revealed a successful stress induction. Increased salivary cortisol at baseline was associated with slower reaction times across both tasks, suggesting a general detrimental effect of cortisol on cognitive functioning. Despite these findings, however, the hypothesised effects of the acute stress manipulation were not found for either task. Supplementary analyses indicated that these results were unrelated to the magnitude or duration of the stress response. Our results therefore suggest the standard version of the ANT may be insensitive to the effects of acute stress, and that higher cognitive loads may be necessary to observe stress effects on the n-back task.
Collapse
|
27
|
The Role of Cannabinoids in Bone Metabolism: A New Perspective for Bone Disorders. Int J Mol Sci 2021; 22:ijms222212374. [PMID: 34830256 PMCID: PMC8621131 DOI: 10.3390/ijms222212374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.
Collapse
|
28
|
Ney LJ, Matthews A, Hsu CMK, Zuj DV, Nicholson E, Steward T, Nichols D, Graham B, Harrison B, Bruno R, Felmingham K. Cannabinoid polymorphisms interact with plasma endocannabinoid levels to predict fear extinction learning. Depress Anxiety 2021; 38:1087-1099. [PMID: 34151472 DOI: 10.1002/da.23170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The endocannabinoid system is gaining increasing attention as a favorable target for improving posttraumatic stress disorder (PTSD) treatments. Exposure therapy is the gold-standard treatment for PTSD, and fear extinction learning is a key concept underlying successful exposure. METHODS This study examined the role of genetic endocannabinoid polymorphisms in a fear extinction paradigm with PTSD compared to healthy participants (N = 220). Participants provided saliva for genotyping, completed a fear conditioning and extinction task, with blood samples taken before and after the task (n = 57). Skin conductance was the outcome and was analyzed using mixed models. RESULTS Results for cannabinoid receptor type 1 polymorphisms suggested that minor alleles of rs2180619 and rs1049353 were associated with poorer extinction learning in PTSD participants. The minor allele of the fatty acid amide hydrolase (FAAH) polymorphism rs324420 was associated with worse extinction in PTSD participants. Subanalysis of healthy participants (n = 57) showed the FAAH rs324420 genotype effect was dependent on plasma arachidonoyl ethanolamide (AEA) level, but not oleoylethanolamide or 2-arachidonoyl glycerol. Specifically, higher but not lower AEA levels in conjunction with the minor allele of FAAH rs324420 were associated with better extinction learning. CONCLUSIONS These findings provide translational evidence that cannabinoid receptor 1 and AEA are involved in extinction learning in humans. FAAH rs324420's effect on fear extinction is moderated by AEA plasma level in healthy controls. These findings imply that FAAH inhibitors may be effective for targeting anxiety in PTSD, but this effect needs to be explored further in clinical populations.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Hobart, Australia
| | | | | | - Daniel V Zuj
- Department of Psychology, Swansea University, Wales, United Kingdom
| | - Emma Nicholson
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Trevor Steward
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Bronwyn Graham
- School of Psychology, The University of New South Wales, Kensington, Australia
| | - Ben Harrison
- Department of Psychiatry, Melbourne Neuropsychiatry Center, University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Raimondo Bruno
- School of Psychology, University of Tasmania, Hobart, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Ney LJ, Matthews A, Nicholson E, Zuj D, Ken Hsu CM, Steward T, Graham B, Harrison B, Nichols D, Felmingham K. BDNF genotype Val66Met interacts with acute plasma BDNF levels to predict fear extinction and recall. Behav Res Ther 2021; 145:103942. [PMID: 34340176 DOI: 10.1016/j.brat.2021.103942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Brain-derived neurotropic factor (BDNF) is a potent regulator of memory processes and is believed to influence the consolidation of fear extinction memories. No previous human study has tested the effect of unstimulated BDNF on fear extinction recall, and no study has tested the association between plasma BDNF levels and psychophysiological responding during an extinction paradigm. We tested the association between fear responses during a 2-day differential conditioning, extinction and extinction recall paradigm and Val66Met genotype in a group of healthy participants (N = 191). There were no group differences during habituation or acquisition. Met allele carriers compared to Val homozygotes displayed higher responses to the CS + compared to the CS- during extinction learning and had higher responding to both the CS+ and CS- during extinction recall. Plasma levels of BDNF protein that were collected in a sub-sample of the group (n = 56) moderated the effect of Met allele presence, such that lower BDNF level was associated with higher skin conductance response in the Met but not Val group to the CS+ during extinction learning and to both the CS+ and CS- during extinction recall. The current results extend previous observations of a Val66Met effect during fear extinction learning to extinction recall and show for the first time that these effects are moderated by plasma BDNF level.
Collapse
Affiliation(s)
- Luke John Ney
- School of Psychological Sciences, University of Tasmania, Australia.
| | - Allison Matthews
- School of Psychological Sciences, University of Tasmania, Australia
| | - Emma Nicholson
- School of Psychological Sciences, University of Melbourne, Australia
| | - Daniel Zuj
- Department of Psychology, Swansea University, United Kingdom
| | | | - Trevor Steward
- School of Psychological Sciences, University of Melbourne, Australia
| | - Bronwyn Graham
- School of Psychology, University of New South Wales, Australia
| | - Ben Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
30
|
Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021; 10:cells10061279. [PMID: 34064024 PMCID: PMC8224009 DOI: 10.3390/cells10061279] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system is involved in a wide range of processes including the control of energy acquisition and expenditure. Endocannabinoids and their receptors are present in the central nervous system but also in peripheral tissues, notably the adipose tissues. The endocannabinoid system interacts with two main hormones regulating appetite, namely leptin and ghrelin. The inhibitory effect of the cannabinoid receptor 1 (CB1) antagonist rimonabant on fat mass suggested that the endocannabinoid system can also have a peripheral action in addition to its effect on appetite reduction. Thus, several investigations have focused on the peripheral role of the endocannabinoid system in the regulation of metabolism. The white adipose tissue stores energy as triglycerides while the brown adipose tissue helps to dissipate energy as heat. The endocannabinoid system regulates several functions of the adipose tissues to favor energy accumulation. In this review we will describe the presence of the endocannabinoid system in the adipose tissue. We will survey the role of the endocannabinoid system in the regulation of white and brown adipose tissue metabolism and how the eCB system participates in obesity and metabolic diseases.
Collapse
|
31
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
32
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
33
|
Ney L, Stone C, Nichols D, Felmingham K, Bruno R, Matthews A. Endocannabinoid reactivity to acute stress: Investigation of the relationship between salivary and plasma levels. Biol Psychol 2021; 159:108022. [PMID: 33460783 DOI: 10.1016/j.biopsycho.2021.108022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
The endogenous cannabinoid (eCB) system has been shown in animal models to regulate the initiation and termination of central nervous responses to stress. In human studies, the role of peripherally measured eCBs is much less clear and the effect in salivary eCBs has not been studied. In this study, we use a novel method to quantify cortisol and eCBs arachidonoyl ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG) in human saliva, as well as in plasma samples. Forty-five females and 32 males completed a mixed physiological/psychosocial stress-induction study where saliva, and blood samples in males, were collected at baseline, immediately following, 30-minutes following, and 45-minutes following stress induction. Cortisol significantly increased after stress, but there were sex differences in the cortisol response to stress, with females having higher cortisol after stress compared to males. There was a significant increase in salivary levels of 2-AG immediately following stress induction, but no effect of AEA. Salivary AEA was higher in males compared to females. Surprisingly, there was no effect of stress on plasma AEA or 2-AG levels in the male cohort, though small effect sizes for 2-AG were observed, which is consistent with most other human literature. This study is the first to show that the eCB system is active in human saliva and is responsive to acute stress, possibly as part of the sympathetic nervous system response.
Collapse
Affiliation(s)
- Luke Ney
- School of Psychology, University of Tasmania, Australia.
| | - Caleb Stone
- School of Psychology, University of Tasmania, Australia
| | - David Nichols
- Organic Mass Spectrometry, University of Tasmania, Australia
| | - Kim Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | | | | |
Collapse
|
34
|
Ney LJ, Felmingham KL, Nichols D. Reproducibility of saliva progesterone measured by immunoassay compared to liquid chromatography mass spectrometry. Anal Biochem 2020; 610:113984. [PMID: 33039429 DOI: 10.1016/j.ab.2020.113984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022]
Abstract
Immunoassay overestimates progesterone in blood, but no studies have tested whether this occurs in saliva. We measured progesterone in saliva using immunoassay and mass spectrometry. We tested the immunoassay for cross reactivity with dehydroepiandrosterone sulfate (DHEA-S) and 17α-hydroxyprogesterone (17α-OHP). Progesterone was significantly higher in immunoassay compared to mass spectrometry. Immunoassay progesterone levels increased in when incremental levels of 17α-OHP standard was added. This effect was not observed with the addition of DHEA-S. Research using salivary progesterone immunoassay techniques should be wary, particularly with individuals taking steroid supplementation or with high levels of progesterone metabolites.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Australia
| |
Collapse
|
35
|
Brain-derived neurotropic factor and cortisol levels negatively predict working memory performance in healthy males. Neurobiol Learn Mem 2020; 175:107308. [DOI: 10.1016/j.nlm.2020.107308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022]
|