1
|
Shao Y, Li X, Qi X, Li J, Zhao S, Sun P, Wang H, Cheng Y, Zhang Z, Chen L, Zhang X, Zhu M. A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal Chim Acta 2024; 1314:342781. [PMID: 38876519 DOI: 10.1016/j.aca.2024.342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Juan Li
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Sheng Zhao
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Peiyan Sun
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Qi G. Efficient capture and highly sensitive analysis of okadaic acid by three-dimensional covalent organic frameworks with hydroxyl surface engineering. J Chromatogr A 2023; 1708:464334. [PMID: 37660560 DOI: 10.1016/j.chroma.2023.464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
A novel three-dimensional covalent organic framework (3D-COF) with content-tunable and active hydroxyl groups (OH) on the pore walls was developed and adopted for the high-performance capture of okadaic acid (OA) marine toxins. Using pore-surface engineering, the integration of linear building blocks (4,4'-diamino-3,3'-biphenyldiol, BD(OH)2 and benzidine, BD) with the 3D structural building block backbone (4,4',4'',4'''-methane-tetrayltetrabenzaldehyde, TFPM) was achieved. By adjusting the ratio of BD(OH)2, functional multicomponent-COFs [OH]x-BD-TFPM COFs (X = 25%) were synthesized, which offered ideal access to convert a conventional COF into a functional platform with multiple-mode interactions of hydrophobic and hydrophilic groups for OA capture. [OH]x-BD-TFPM was characterized using SEM, XRD, FT-IR, and BET. The adsorption features and analytical performance of OA were screened and evaluated. Optimization of dispersive solid-phase extraction using [OH]25-BD-TFPM was accomplished, and the method was verified for sensitive quantitative detection of OA in clam and mussel samples. Coupled with LC-MS/MS, the resultant [OH]25-BD-TFPM COF demonstrated the ability to analyze OA, and the limit of detection for OA in shellfish was determined to be 0.005 μg/kg. A significant improvement in trace OA detection was observed compared to previously reported SPE materials without adjustable hydrophilic interactions. The recoveries of OA in the fortified clam and mussel samples were in the ranges of 93.9‒105.1% and 96.7‒110.2%, respectively. This study highlights that OH-group surface engineering in channel walls is a facile and powerful strategy for developing functional 3D-COFs with multiple interactions for high-performance target capture.
Collapse
Affiliation(s)
- Guomin Qi
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
3
|
Kong L, Gan Y, Wang T, Sun X, Ma C, Wang X, Wan H, Wang P. Single-stranded DNA binding protein coupled aptasensor with carbon-gold nanoparticle amplification for marine toxins detection assisted by a miniaturized absorbance reader. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131023. [PMID: 36857823 DOI: 10.1016/j.jhazmat.2023.131023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Okadaic acid (OA), one of the most widely distributed marine toxins worldwide poses a severe threat to human health. Previous sensing methods for OA detection are usually based on antigen-antibody binding mechanism. However, the drawbacks of antibodies especially the enzyme-labeled antibodies, such as the harsh storage condition and high cost, lead to significant challenges to OA detection in biological samples. To overcome these limitations, a single-stranded DNA binding protein (SSB) coupled aptasensor was developed for OA detection. SSB was incubated on the microplate as a substitute for conventional OA-protein conjugations. Carbon-gold nanoparticles were synthesized and labeled with horseradish peroxidase and thiol-modified aptamers to obtain a capture probe (CGNs@HRP-Apt) instead of the enzyme-labeled antibody for signal amplification. OA and SSB competed to bind with limited aptamers on CGNs@HRP-Apt probes followed by colorimetric assay to obtain the optical signals correlated to OA concentration. To achieve on-site detection, a miniaturized and multichannel absorbance reader (Smart-plate reader) was self-designed with full automation for OA detection. Utilizing the SSB coupled aptasensor and the Smart-plate reader, our approach enables cost-effective and on-site OA sensing with a detection range of 2.5-80 ppb and an ultra-low limit of detection of 0.68 ppb. Moreover, novel OA detection kits based on the SSB coupled aptasensor were prepared which can effectively reduce the cost by 15 times lower than that of commercial ELISA kits. Therefore, the developed platform provides a favorable and promising avenue for marine toxin detection in aquaculture and food safety.
Collapse
Affiliation(s)
- Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ying Gan
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tianxing Wang
- Zhejiang, e-Linkcare Meditech co., LTD, No.30 Baita Tongjiang Road, Taizhou, Zhejiang 310011, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Chen H, Zhang W, Liu G, Ding Q, Xu J, Fang M, Zhang L. Highly sensitive detection of okadaic acid in seawater by magnetic solid-phase extraction based on low-cost metal/nitrogen-doped carbon nanotubes. J Chromatogr A 2023; 1689:463772. [PMID: 36610186 DOI: 10.1016/j.chroma.2022.463772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Algae toxins pose a severe threat to human health all over the world. In this study, magnetic metal/nitrogen-doped carbon nanotubes (M-NCNTs) were facilely synthesized based on one-step carbonization and applied for magnetic solid-phase extraction of okadaic acid (OA) from seawater followed by high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS) analyses. Differences in the physicochemical properties of the three prepared materials (Fe/Co/Ni-NCNTs) were investigated to confirm the best extraction material. Among them, Ni-NCNTs demonstrated a faster extraction rate (10 min) and higher adsorption capacity (223.5 mg g-1), mainly due to the higher specific surface area, suitable pore structure and more abundant pyridine nitrogen ring. Under the optimal conditions, the calibration curve was linear over the range (1.0-800.0 pg mL-1) with good determination coefficients (R) of 0.9992. The limit of detection (LOD) obtained in multiple replicates was 0.4 pg mL-1. Three seawater samples were measured by the developed method, 12.3 pg mL-1 of OA was detected with a satisfying recovery (88.6%-106.7%) and acceptable repeatability (RSD ≤ 4.8%, n = 6). The results demonstrate that M-NCNTs materials are a promising candidate for magnetic solid-phase extraction. Benefiting from its high extraction and interference resistance, the established analytical method is expected to be extended to detect other marine environmental pollutions.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Guancheng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Min Fang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
5
|
Ji Y, Cai G, Liang C, Gao Z, Lin W, Ming Z, Feng S, Zhao H. A microfluidic immunosensor based on magnetic separation for rapid detection of okadaic acid in marine shellfish. Anal Chim Acta 2023; 1239:340737. [PMID: 36628732 DOI: 10.1016/j.aca.2022.340737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Okadaic acid (OA) is a marine biotoxin that accumulates in seafood and can cause diarrheic shellfish poisoning if consumed. Accordingly, many countries have established regulatory limits for the content of OA in shellfish. At present, methods used for the detection of marine toxins are time-consuming and labor-intensive. In order to realize rapid, simple, and accurate detection of OA, we developed a novel microfluidic immunosensor based on magnetic beads modified with a highly specific and sensitive monoclonal antibody (mAb) against OA that is used in conjunction with smartphone imaging to realize the rapid detection of OA in shellfish. The method achieves on-site detection results within 1 h with an IC50 value of 3.30 ng/mL for OA and a limit of detection (LOD) of 0.49 ng/mL. In addition, the analysis of real samples showed that the recoveries for spiked shellfish samples ranged from 84.91% to 95.18%, and the results were confirmed by indirect competitive enzyme-linked immunosorbent assay (icELISA), indicating that the method has good accuracy and precision. Furthermore, the results are reported in a specially designed smartphone app. The microfluidic immunosensor has the advantages of simple operation, rapid detection, and high sensitivity, providing a reliable technical solution for detecting OA residues in shellfish.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Gaozhe Cai
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Cheng Liang
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong, 510150, China
| | - Weimin Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
| | - Zizhen Ming
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Wang Y, Bao L, Sun J, Ding Y, Shi J, Duan Z, Chen Z. Superhydrophobic fluorinated microspheres for fluorous affinity chromatography. J Chromatogr A 2022; 1680:463428. [PMID: 36001909 DOI: 10.1016/j.chroma.2022.463428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Fluorous affinity chromatography has received growing attention in separation and purification of fluoro compounds, but the wettability of the fluorinated stationary phases is seldom noticed. Here, we construct a series of micro-sized fluorine-containing microspheres by solvothermal precipitation polymerization. The fluorinated microspheres could be obtained with narrow size distribution at even high monomer loading of 15 wt%. Through alternating fluoro monomer, both the particle size and the wettability of the microsphere array could be tuned. Among them, the poly(divinylbenzene -dodecafluoroheptyl methacrylate), P(DVB-DFHMA), microsphere (6.1 μm) arrays displays superhydrophobicity with 153.2° water contact angle. The P(DVB-DFHMA) fluorinated microspheres (7.58% fluorine content) can be packed into steel-less columns as stationary phase for high-performance liquid chromatography. The retention mechanism of the fluorinated column is proven to be the specific fluorine-fluorine interaction. Compared to the commercial C18 silica column, the fluorinated column can completely separate fluorine-containing compounds under high water content mobile phase, including small fluoro molecules and fluoro macromolecules, at much lower back pressure by fluorous affinity.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liuqian Bao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiajing Sun
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Ding
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiasheng Shi
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhengyu Duan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
7
|
SAKAGUCHI Y. Derivatization LC for the Sensitivity and Accuracy Bioanalysis. BUNSEKI KAGAKU 2022. [DOI: 10.2116/bunsekikagaku.71.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Liang C, Ji Y, Ma J, Zhang C, Zhao H. Development of a highly sensitive and specific monoclonal antibody-based immunoassay for detection of okadaic acid in oysters and green mussels. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2076812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Cheng Liang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- School of Chemical Engineering and Technology, Hainan University, Haikou, People’s Republic of China
| | - Yuxiang Ji
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, People’s Republic of China
- Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
| | - Jiyong Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
| | - Chundong Zhang
- Modern Agricultural Inspection, Testing & Control Center of Hainan Province, Haikou, People’s Republic of China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, People’s Republic of China
- Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou, People’s Republic of China
| |
Collapse
|
9
|
Kawasue S, Sakaguchi Y, Koga R, Hayama T, Yoshida H, Nohta H. Quantification of Casein in Baked Food Products by Selective Analysis of Phosphorylated Peptides Using Fluorous Derivatization with Liquid Chromatography-Tandem Mass Spectrometry Method. Chem Pharm Bull (Tokyo) 2022; 70:19-24. [PMID: 34980728 DOI: 10.1248/cpb.c21-00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein is one of the allergen proteins present in milk. Therefore, a quantification method for the selective analysis of casein using fluorous derivatization with LC-tandem mass spectrometry (LC-MS/MS) was developed. After two allergen proteins (αS1-casein and β-casein) extracted from baked sugar cookies were tryptic digested, the obtained phosphorylated peptides were selectively derivatized by β-elimination with Ba(NO3)2 under basic condition and Michael addition with perfluoroalkylthiol (1H,1H,2H,2H-perfluorooctanethiol, PFOT). In this study, YKVPQLEIVPN(pSer)AQQR (104-119 fragment from αS1-casein) and FQ(pSer)EEQQQTEDELQDK (33-48 fragment from β-casein) obtained by tryptic digestion were selected as target peptides. The phosphorylated serine residue in each peptide was converted to a perfluoroalkyl group by derivatization. The obtained fluorous-derivatized peptides were analyzed by LC-MS/MS, to which a fluorous LC column was connected. Therefore, it was possible to analyze casein without being affected by the matrix components in the baked food sample. When the present method was applied to cookies with arbitrary amounts of αS1-casein and β-casein, the obtained quantification values were in good agreement with the arbitrary amounts spiked. The quantification limits of αS1- and β-casein in cookie analysis were 246 and 152 ng/g, respectively. Hence, this method can be used to analyze trace amounts of allergen proteins present in the baked food.
Collapse
Affiliation(s)
| | | | - Reiko Koga
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | | | - Hitoshi Nohta
- Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
10
|
Kong L, Wang X, Ma C, Zhou S, Sun X, Jiang D, Wang T, Wan H, Wang P. A robust colorimetric aptasensor for the label-free detection of marine toxins based on tyrosine-capped gold nanoparticles. Analyst 2022; 147:5314-5323. [DOI: 10.1039/d2an01394k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tyrosine-capped AuNPs decrease the interaction between targets and AuNPs, presenting better robustness than traditional Cit-AuNPs. Utilizing the superior features, a label-free aptasensor is developed for marine toxin detection for the first time.
Collapse
Affiliation(s)
- Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Deming Jiang
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tianxing Wang
- Zhejiang, e-Linkcare Meditech co., LTD, No.30 Baita Tongjiang Road, Taizhou, Zhejiang, 310011, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|