1
|
Mamidi N, Delgadillo RMV, Sustaita AO, Lozano K, Yallapu MM. Current nanocomposite advances for biomedical and environmental application diversity. Med Res Rev 2024. [PMID: 39287199 DOI: 10.1002/med.22082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/29/2023] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.
Collapse
Affiliation(s)
- Narsimha Mamidi
- School of Pharmacy, Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Ramiro M V Delgadillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Alan O Sustaita
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo Leon, México
| | - Karen Lozano
- Mechanical Engineering Department, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| |
Collapse
|
2
|
Pham PT, Quan TC, Le QT, Bui MQ, Tran AH, Phung ATT, Hoang AQ, Minh TB, Tran-Lam TT, Tran HN, Tran TM. Quantification of parabens in marine fish samples by a rapid, simple, effective sample preparation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16571-16582. [PMID: 38321276 DOI: 10.1007/s11356-024-32321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Parabens (p-hydroxybenzoic acid esters) commonly used preservatives (in cosmetics, pharmaceuticals, and foods) can pose potential effects on environmental health. In this study, seven parabens were quantified in marine fish samples using an ultra-high performance liquid chromatography triple quadrupole mass spectrometer (UHPLC-MS/MS) system. Parabens in the fish samples were extracted and purified by a rapid, simple, and effective procedure comprising sample homogenization with solvent, solid-phase extraction clean-up, and solvent evaporation. Results demonstrated that the recoveries of seven compounds (with relative standard deviation < 15%) were 88-103% in matrix-spike samples and 86-105% in surrogate standards. The method detection limits and method quantification limits of seven parabens were 0.015-0.030 and 0.045-0.090 ng/g-ww (wet weight), respectively. The optimized method was applied to measure the concentration of parabens in the 37 marine fish samples collected from Vietnam coastal waters. The concentration ranges of seven parabens found in round scad and greater lizardfish samples were 6.82-25.3 ng/g ww and 6.21-17.2 ng/g-ww, respectively. Among parabens, methylparaben accounted for the highest contribution in both fish species (43.2 and 44.9%, respectively). Based on the measured concentrations of parabens in marine fish samples, the estimated daily intake was calculated for children and adults with the corresponding values of 0.0477 µg/kg/day and 0.0119 µg/kg/day, respectively. However, the presence of parabens in Vietnamese marine fish may not pose a significant risk to human health.
Collapse
Affiliation(s)
- Phuong Thi Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Thuy Cam Quan
- Viet Tri University of Industry, 9 Tien Son, Tien Cat, Viet Tri, Phu Tho, 75000, Vietnam
| | - Quynh Thi Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Minh Quang Bui
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Anh Hoang Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Anh-Tuyet Thi Phung
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam
| | - Thanh-Thien Tran-Lam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, 10000, Vietnam
- Institute of Mechanics and Applied Informatics, Vietnam Academy of Science and Technology (VAST), 291 Dien Bien Phu, Ward 7, District 3, Ho Chi Minh City, 700000, Vietnam
| | - Hai Nguyen Tran
- Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 10000, Vietnam.
| |
Collapse
|
3
|
Tokalıoğlu Ş, Shahir S, Yılmaz Y, Patat Ş. Selective and fast magnetic dispersive solid phase micro-extraction of copper and lead in water and vegetables after synthesis of magnetic mesoporous carbon. Talanta 2024; 266:125002. [PMID: 37536105 DOI: 10.1016/j.talanta.2023.125002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Magnetic mesoporous carbon (Fe3O4@C, MMC) was synthesized and characterized. It was used for the first time as a sorbent for the magnetic dispersive solid phase microextraction (M-dSPμE) of copper and lead in water and vegetables. FAAS was used to determine the analyte concentrations after elution. The MMC was found to be have surface area of 145.9 m2 g-1 and average pore diameter of 15 nm. The analytical parameters affecting M-dSPμE of copper and lead were optimized. They were pH of sample, 6; eluent, 2 mol L-1 HCl (3 mL); and sample volume, 250 mL. The MMC reaches equilibrium very fast without vortexing for adsorption and only 5 s for elution. The LOD and PF of the M-dSPμE method for copper and lead were found to be 0.87 μg L-1 and 83 for Cu(II) and 2.8 μg L-1 and 167 for Pb(II), respectively. The precision of the M-dSPμE method was found to be ≤ 3.2%. The M-dSPμE method was verified by certificate reference materials (TMDA-53.3 Fortified Lake water and NIST SRM 1573a Tomato Leaves). It was successfully applied to the determination of copper and lead in lake water, wastewaters, sea water, radish, spinach, lettuce, and celery samples.
Collapse
Affiliation(s)
- Şerife Tokalıoğlu
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey.
| | - Shukria Shahir
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| | - Yakup Yılmaz
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| | - Şaban Patat
- Erciyes University, Faculty of Sciences, Chemistry Department, 38039, Kayseri, Turkey
| |
Collapse
|
4
|
Dai J, Zhang L, Xu J, Peng F, Wu Z, Fu L, Guo Y, Chang B, Lu W, Ding C. Determination of Parabens and Their Metabolites in Seminal Plasma from Chinese Men by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). TOXICS 2023; 11:131. [PMID: 36851005 PMCID: PMC9962888 DOI: 10.3390/toxics11020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Parabens are endocrine-disrupting chemicals (EDCs) that have estrogen-like activities and may cause male reproductive disorders. Here, we developed a method for the simultaneous determination of four parabens (MeP, EtP, n-PrP, n-BuP) and two metabolites (4-HB and 3,4-DHB) in human seminal plasma by UPLC-MS/MS. The method was used to analyze 144 seminal plasma samples from Chinese males. MeP, EtP, n-PrP, and 4-HB were the dominant compounds. MeP, EtP, and n-PrP were significantly correlated to each other. In addition, 4-HB was significantly correlated to MeP, EtP, n-PrP, and 3,4-DHB, respectively. The results provide direct evidence that parabens and their metabolites are widely distributed in the male reproductive system. The study presents the paraben metabolites levels in human seminal plasma for the first time.
Collapse
Affiliation(s)
- Jing Dai
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| | - Linyuan Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jianfeng Xu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| | - Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Longlong Fu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Ying Guo
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Bing Chang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenhong Lu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| |
Collapse
|
5
|
Fabrication of magnetic covalent organic framework for effective and selective solid-phase extraction of propylparaben from food samples. Food Chem 2022; 386:132843. [PMID: 35381536 DOI: 10.1016/j.foodchem.2022.132843] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Efficient magnetic solid phase extraction using crystalline porous polymers can find important applications in food safety. Herein, the core-shell Fe3O4@COFs nanospheres were synthesized by one-pot method and characterized in detail. The porous COF shell with large surface area had fast and selective adsorption for propylparaben via π-π, hydrogen bonding and hydrophobic interactions. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the extraction equilibrium was reached only in 5 min, the maximum adsorption capacity for propylparaben was 500 mg g-1 and the proposed Fe3O4@DhaTab-based-MSPE-HPLC-UV method afforded good linearity (4-20000 μg mL-1) with R2 (0.997), low limits of detection (0.55 μg L-1) and limits of quantification (1.5 μg L-1). Furthermore, the developed method was applied to determine propylparaben in soft drinks with the recoveries (97.0-98.3%) and relative standard deviations (0.61 to 3.75%). These results revealed the potential of Fe3O4@DhaTab as efficient adsorbents for parabens in food samples.
Collapse
|
6
|
Yang XS, Zhao J, Wang LL, Liu YS, Liu QW, Peng XY, Wang P. Core-shell-structured magnetic covalent organic frameworks for effective extraction of parabens prior to their determination by HPLC. Mikrochim Acta 2022; 189:340. [PMID: 35995957 DOI: 10.1007/s00604-022-05444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Covalent organic framework (COF)-decorated magnetic nanoparticles (Fe3O4@DhaTab) with core-shell structure have been synthesized by one-pot method. The prepared Fe3O4@DhaTab was well characterized, and parameters of magnetic solid-phase extraction (MSPE) for parabens were also investigated in detail. Under optimized conditions, the adsorbent dosage was only 3 mg and extraction time was 10 min. The developed Fe3O4@DhaTab-based MSPE-HPLC analysis method offered good linearity (0.01-20 μg mL-1) with R2 (0.999) and low limits of detection (3.3-6.5 μg L-1) using UV detector at 254 nm. The proposed method was applied to determine four parabens in environmental water samples with recoveries in the range 64.0-105% and relative standard deviations of 0.16-7.8%. The adsorption mechanism was explored and indicated that porous DhaTab shell provided π-π, hydrophobic, and hydrogen bonding interactions in the MSPE process. The results revealed the potential of magnetic-functionalized COFs in determination of environmental contaminants.
Collapse
Affiliation(s)
- Xiao-Shuai Yang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025. .,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025.
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Quan-Wen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| | - Xin-Yan Peng
- Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, People's Republic of China, 264005
| | - Ping Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, People's Republic of China, 264025.,Institute of Bionanotechnology, Ludong University, Yantai, Shandong, People's Republic of China, 264025
| |
Collapse
|
7
|
Eco-friendly magnetic Solid-Phase extraction and deep eutectic solvent for the separation and detection of parabens from the environmental water and urine samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhang Q, Yang B, Wen M, Wang X. Analysis of trace parabens in environmental samples by highly efficient solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography‐tandem mass spectrometry. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry Key Laboratory for Analytical Science of Food and Environment Pollution of QianXi Nan Xingyi Normal University for Nationalities Xingyi P. R. China
| | - Bingnian Yang
- School of Biology and Chemistry Key Laboratory for Analytical Science of Food and Environment Pollution of QianXi Nan Xingyi Normal University for Nationalities Xingyi P. R. China
| | - Ming Wen
- School of Biology and Chemistry Key Laboratory for Analytical Science of Food and Environment Pollution of QianXi Nan Xingyi Normal University for Nationalities Xingyi P. R. China
| | - Xingyi Wang
- School of Biology and Chemistry Key Laboratory for Analytical Science of Food and Environment Pollution of QianXi Nan Xingyi Normal University for Nationalities Xingyi P. R. China
| |
Collapse
|
9
|
Farahmandi M, Yamini Y, Baharfar M, Karami M. Dispersive magnetic solid phase microextraction on microfluidic systems for extraction and determination of parabens. Anal Chim Acta 2021; 1188:339183. [PMID: 34794570 DOI: 10.1016/j.aca.2021.339183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 01/06/2023]
Abstract
In this study, a customized microfluidic system was utilized for magnetic solid phase extraction of parabens. For this sake, magnetite nanoparticles were synthesized and coated with polyaniline to enable efficient extraction and magnetic separation of sorbents particles. The synthesized particles were extensively characterized in terms of morphology, composition, and magnetic properties. The utilized microfluidic platform consisted of a relatively long spiral microchannel fabricated through laser-cutting and multi-layered assembly. To obtain an efficient dispersion, simultaneous flows of sample solution and magnetic beads dispersion were introduced to the chip with the aid of two syringe pumps. In order to increase the stability of the dispersed nanoparticles in the aqueous solution, various chemical and instrumental parameters were investigated and optimized. In this context, exploitation of hydrophobic surfactants and surface charge manipulation of the particles was shown to be a highly promising approach for effective dispersion and maintenance of magnetic beads in long microfluidic channels. Under the optimized conditions, the calibration curves were linear in the range of 5.0-1000.0 μg L-1 for propyl paraben and 8.0-1000.0 μg L-1 for methyl- and ethyl paraben with coefficients of determination greater than 0.992. Relative standard deviations were assessed as intra- and inter-day values which were less than 7.2% and the preconcentration factors in water were 10-15 for 100 μg L-1 of parabens in water. Finally, the method was applied for the extraction of parabens from fruit juice, sunscreen, and urine samples which showed favorable accuracy and precision.
Collapse
Affiliation(s)
- Maryam Farahmandi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mahroo Baharfar
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Monireh Karami
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|