1
|
He GS, Xia JK, Li QH, Zheng Y, Shi CR, Li R, Hong Q, Chen XM. Specnuezhenide: Comprehensive review of pharmacology, pharmacokinetics and ethnomedicinal uses. Fitoterapia 2025; 181:106389. [PMID: 39805507 DOI: 10.1016/j.fitote.2025.106389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Specnuezhenide (SPN) is a bioactive iridoid terpenoid compound mainly found in Ligustri Lucidi Fructus (LLF), that has a broad spectrum of pharmacological effects, including anti-neoplastic, hepatoprotective, anti-aging, anti-inflammatory, immune-modulatory properties. PURPOSE The present review provides a comprehensive summary of natural medicinal plants, traditional Chinese medicine compounds containing SPN, and their corresponding pharmacological mechanisms. METHODS Using several globally recognized databases such as Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, and CNKI until December 2024, A comprehensive literature search and analysis was carried out with the keywords "Specnuezhenide", " Pharmacology ", "Pharmacokinetics" and " Chinese herbal compound". RESULTS The results indicated that SPN is present in a diverse range of plants, including LLF, Osmanthus fragrans seeds and Naked barley. SPN plays an anti-inflammatory role by regulating the NF-κB and MAPK signaling pathways, down-regulating the expression of TNF-α, IL-1β, IL-6 and other cytokines. Furthermore, many Chinese herbal compounds have been found to contain SPN, such as treatment of spleen and kidney deficiency of compound Shenhua tablet, treatment of liver-kidney Yin deficiency of Er Zhi Wan, treatment of pulmonray abscess of Qidongning and treatment of stagnation of QI due to depression of the liver of Shuganzhi Tablet. SPN is primarily distributed in the stomach, intestine, and liver. However, due to its limited absorption in the gastrointestinal tract and low blood concentration, its bioavailability is significantly reduced. CONCLUSIONS Thereby, SPN holds immense potential in the prevention and treatment of liver, lung and kidney complications. This review intends to provide a novel insight for further development of SPN, hoping to reveal the potential of SPN and necessity of further studies in this field.
Collapse
Affiliation(s)
- Guo-Sen He
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Ji-Kai Xia
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qi-Hu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China; School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Zheng
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Chun-Ru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Run Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| | - Xiang-Mei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, State Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Key Disciplines of National Administration of Traditional Chinese Medicine(zyyzdxk-2023310), Beijing 100853, China.
| |
Collapse
|
2
|
Zhou Y, Wang P, Zhou Z, Zhou M, Chi M, Zheng L, Huang Y. Quantitative analysis of three bioactive components of Biancaea decapetala extracts in rat plasma and RAW264.7 cells using UPLC-MS/MS and its application to comparative pharmacokinetics in normal and diseased states. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1248:124356. [PMID: 39509965 DOI: 10.1016/j.jchromb.2024.124356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Biancaea decapetala (Roth) O.Deg. (Fabaceae), traditionally utilized by the Hmong for treating rheumatoid arthritis (RA), has its pharmacokinetic behavior under disease conditions largely unexplored. In view of this, a UPLC-MS/MS method was established for the determination of protosappanin B (PTB), protosappanin B-3-O-β-D-glucoside (PTD), and 3-deoxysappanchalcone (3-DSC), key bioactive components of the herb, in rat plasma and RAW264.7 cells to explore the effect of disease state on the pharmacokinetic profiles changes of these three components in vitro and in vivo. These components were detected using multiple reaction monitoring (MRM) process in positive and negative mode. Each calibration curve had a high R2 value of > 0.99. The intra- and inter-day precisions of PTD, PTB, 3-DSC were all < 15 %, and accuracy ranged from 85 % to 115 %. The RSD values pertaining to stability, recovery, matrix effect, and stability remained below 15.0 %. It was successfully applied for the investigation of the pharmacokinetics of these three components in rat plasma and RAW264.7 cells after administration of Biancaea decapetala extracts (BDE). In rat pharmacokinetic experiments, significant differences were observed in the AUC(0-t), MRT(0-t), and Clz/F values of PTD, PTB, 3-DSC between adjuvant-induced arthritis (AA) and normal rats. In cellular pharmacokinetic experiments, comparison with the normal group revealed increased AUC(0-t) and MRT(0-t) for these three components in the LPS-induced inflammatory cell model, along with decreased Clz/F, which was consistent with in vivo experimental outcomes. These findings suggest an increased absorption rate and a decreased elimination rate of the three components of BDE in AA rats and inflammatory cells, indicating a potential alteration in the rate and extent of drug metabolism. This study provided a theoretical reference for further clarification of its pharmacodynamic basis.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Pu Wang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China
| | - Meng Zhou
- National Engineering Research Center of Miao's Medicines, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, PR China
| | - Mingyan Chi
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China; National Engineering Research Center of Miao's Medicines, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, PR China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China.
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, PR China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550004, PR China.
| |
Collapse
|
3
|
Tang J, Wang L, Shi M, Feng S, Zhang T, Han H. Study on the mechanism of Shuganzhi Tablet against nonalcoholic fatty liver disease and lipid regulation effects of its main substances in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116780. [PMID: 37311504 DOI: 10.1016/j.jep.2023.116780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuganzhi Tablet (SGZT) originates from a famous traditional Chinese herbal formula Chaihu Decoction which can be applied to treat liver diseases, however, the pharmacodynamic mechanism of SGZT needs to be evaluated. AIM OF THIS STUDY To study the mechanism of SGZT in the treatment of non-alcoholic fatty liver disease (NAFLD), and screen out its effective ingredients. MATERIALS AND METHODS In this study, firstly, the main components of SGZT were analyzed qualitatively. And a rat model of NAFLD was established by feeding high-fat diet. Serum biochemical indexes and liver pathological analysis were used to evaluate the pharmacodynamic effect of SGZT in the treatment of NAFLD. In order to explore the pharmacodynamic mechanism, proteomics and metabolomics analysis were used. Western blotting was used to verify the expression of important differential proteins. And L02 cells were treated with free fatty acids (FFA) and the main substances of SGZT to establish the cell model of NAFLD in vitro and to reveal the pharmacodynamic substance of SGZT. RESULTS Twelve components were detected in SGZT, and according to the results of serum biochemical indexes and liver pathological analysis, SGZT could effectively treat NAFLD. Combined with the results of bioinformatics analysis, we found that 133 differentially expressed proteins were reversed in liver samples of rats treated with SGZT. The important proteins in PPAR signaling pathway, steroid biosynthesis, cholesterol metabolism and fatty acid metabolism were mainly regulated to maintain cholesterol homeostasis and improve lipid metabolism. SGZT also affected various metabolites in rat liver, including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and taurine. In addition, the main components contained in SGZT (hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A) and a metabolite (resveratrol) could significantly reduce FFA-induced intracellular lipid accumulation. CONCLUSION SGZT effectively treated NAFLD, and PPAR-γ, Acsl4, Plin2 and Fads1 may be the main targets of SGZT. And Fads1-EPA/DHA-PPAR-γ may be the potential pharmacodynamic pathway. Cell experiments in vitro revealed that the main components of SGZT and their metabolites, such as hesperidin, polydatin, naringin, emodin, specnuezhenide, saikosaponin A and resveratrol may be the main components of its efficacy. Further research is needed to reveal and validate the pharmacodynamic mechanism.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Lixiang Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Mengge Shi
- Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Shuaixia Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Han Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| |
Collapse
|
4
|
Wang X, Zhang J, Luo L, Song X, Wang P, Liu D. Comparative pharmacokinetics of 24 major bioactive components in normal and ARDS rats after oral administration of Xuanfei Baidu granules. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115472. [PMID: 35718055 DOI: 10.1016/j.jep.2022.115472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanfei Baidu prescription, consisting of 13 Chinese medicines, was formulated by academicians Boli Zhang and Professor Qingquan Liu based on their experience in first-line clinical treatment of COVID-19. Xuanfei Baidu granules (XFBD granules) are a proprietary Chinese medicine preparation developed based on Xuanfei Baidu prescription. It is recommended for the treatment of patients with the common wet toxin and lung stagnation syndrome of COVID-19. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological conditions are unclear. MATERIALS AND METHODS A rapid and sensitive analytical method, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS), was developed and applied to 24 major bioactive components in normal and ARDS rats after oral administration of XFBD granules. We studied the metabolic process of XFBD granules in vivo to compare the differences in pharmacokinetic parameters between normal and model metabolic processes. RESULTS This method was successfully applied to the pharmacokinetic investigation of 24 major components of XFBD granules following oral administration in normal and ARDS rats. Eight components, including ephedrine and amygdalin, were more highly absorbed and had shorter Tmax values than the model group; the absorption of six components, such as rhein, decreased in ARDS rats, and there was no significant difference in the absorption of ten components, such as verbenalin and naringin, between the normal and ARDS rats. The results showed that the peak times of other analytes were very short, and 80% of these target constituents were eliminated in both normal and ARDS rats within 6 h except for liquiritigenin and 18β-glycyrrhetinic acid. CONCLUSIONS In this study, a rapid and sensitive UPLC-MS/MS analytical method was developed and applied to 24 major bioactive components in normal and ARDS rats after the oral administration of XFBD granules. This will serve to form the basis for further studies on the pharmacokinetic-pharmacodynamic correlation of XFBD granules.
Collapse
Affiliation(s)
- Xinrui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Jingze Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Lifei Luo
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Xinbo Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ping Wang
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China
| | - Dailin Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin, China.
| |
Collapse
|
5
|
Tan Y, Li X, Tang M, Wang H, Chen Y, Ye H, Zhao J, Wu R, Wei P, Du L, Wan L. Metabolic profiling in liver microsomes and mice of E28, a potent FLT3 inhibitor. Xenobiotica 2022; 52:186-198. [PMID: 35078381 DOI: 10.1080/00498254.2022.2033882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yan Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiandeng Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghai Tang
- Lab of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China Chengdu
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Lab of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China Chengdu
| | - Haoyu Ye
- Lab of Natural Product Drugs, Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China Chengdu
| | - Jiajia Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panhong Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Leilei Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|