1
|
Wiedmer SK, Riekkola ML. Field-flow fractionation - an excellent tool for fractionation, isolation and/or purification of biomacromolecules. J Chromatogr A 2023; 1712:464492. [PMID: 37944435 DOI: 10.1016/j.chroma.2023.464492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Field-flow fractionation (FFF) with its several variants, has developed into a mature methodology. The scope of the FFF investigations has expanded, covering both a wide range of basic studies and especially a wide range of analytical applications. Special attention of this review is given to the achievements of FFF with reference to recent applications in the fractionation, isolation, and purification of biomacromolecules, and from which especially those of (in alphabetical order) bacteria, cells, extracellular vesicles, liposomes, lipoproteins, nucleic acids, and viruses and virus-like particles. In evaluating the major approaches and trends demonstrated since 2012, the most significant biomacromolecule applications are compiled in tables. It is also evident that asymmetrical flow field-flow fractionation is by far the most dominant technique in the studies. The industry has also shown current interest in FFF and adopted it in some sophisticated fields. FFF, in combination with appropriate detectors, handles biomacromolecules in open channel in a gentle way due to the lack of shear forces and unwanted interactions caused by the stationary phase present in chromatography. In addition, in isolation and purification of biomacromolecules quite high yields can be achieved under optimal conditions.
Collapse
Affiliation(s)
- Susanne K Wiedmer
- Department of Chemistry, POB 55, 00014 University of Helsinki, Finland
| | | |
Collapse
|
2
|
Liu S, Wang Z, Wang M, Meng T, Zhang Y, Zhang W, Sui Z. Evaluation of volume-based flow cytometry as a potential primary method for quantification of bacterial reference material. Talanta 2023; 255:124197. [PMID: 36571974 DOI: 10.1016/j.talanta.2022.124197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Bacterial reference materials (RMs) play a crucial role in many analytical processes of microbiological detection. Currently, bacteria are typically counted using the traditional plate-based approach, which results in a higher uncertainty of bacterial RMs unfortunately. Therefore, novel methods are urgently required for the value assignment of RMs in the field of microbiology to derive measurement traceability and accuracy. A potential primary method for microbiological quantification based on flow cytometry (FCM) is described in this study using Escherichia coli O157 (E. coli O157) as an example. The proposed method was applied to determine the number of viable E. coli O157 cells in the RMs with a result of (5.48 ± 0.27) × 108 cells mL-1, which was in good agreement with the result obtained using the plate-based method (En = 0.47). Additionally, this method could be entirely described and understood by equations, and provides formal traceability to the SI for counts of viable bacterial cells, while the associated relative expanded uncertainty (4.93%, k = 2) was significantly lower in comparison to the plate-based method. Therefore, the FCM-based method might be a potential primary method for characterizing bacterial RMs. To our knowledge, this is the first description of FCM as a potential primary method for accurate and traceable quantification of viable bacterial cells with a comprehensive uncertainty statement in microbiological metrology.
Collapse
Affiliation(s)
- Siyuan Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Ziquan Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Meng Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China
| | - Tao Meng
- Division of Thermophysics Metrology, National Institute of Metrology, Beijing, 100029, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Hebei Key Laboratory of Analysis and Control for Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
3
|
Guo Y, Ye H, Wang H, Wang Q, Fan S, Dou H. Asymmetrical flow field-flow fractionation combined with ultrafiltration: A novel and high-efficiency approach for separation, purification, and characterization of Ganoderma lucidum polysaccharides. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Choi HJ, Ko M, Kim IH, Yu H, Kim JY, Yun T, Yang JS, Yang GG, Jeong HS, Moon MH, Kim SO. Wide-Range Size Fractionation of Graphene Oxide by Flow Field-Flow Fractionation. ACS NANO 2022; 16:9172-9182. [PMID: 35679534 DOI: 10.1021/acsnano.2c01402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many interesting properties of 2D materials and their assembled structures are strongly dependent on the lateral size and size distribution of 2D materials. Accordingly, effective size separation of polydisperse 2D sheets is critical for desirable applications. Here, we introduce flow field-flow fractionation (FlFFF) for a wide-range size fractionation of graphene oxide (GO) up to 100 μm. Two different separation mechanisms are identified for FlFFF, including normal mode and steric/hyperlayer mode, to size fractionate wide size-distributed GOs while employing a crossflow field for either diffusion or size-controlled migration of GO. Obviously, the 2D GO sheet reveals size separation behavior distinctive from typical spherical particles arising from its innate planar geometry. We also investigate 2D sheet size-dependent mechanical and electrical properties of three different graphene fibers produced from size-fractionated GOs. This FlFFF-based size selection methodology can be used as a generic approach for effective wide-range size separation for 2D materials, including rGO, TMDs, and MXene.
Collapse
Affiliation(s)
- Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myoungjae Ko
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - In Ho Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonrabuk-do 55324, Republic of Korea
| | - Jin Yong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Taeyeong Yun
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joon Seon Yang
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonrabuk-do 55324, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Eskelin K, Oksanen HM. Archaeal Viruses: Production of Virus Particles and Vesicle-like Viruses and Purification Using Asymmetrical Flow Field-Flow Fractionation. Methods Mol Biol 2022; 2522:449-465. [PMID: 36125770 DOI: 10.1007/978-1-0716-2445-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asymmetrical flow field-flow fractionation (AF4) is a separation method based on hydrodynamic size of the sample components. It can separate a broad size range of components (~103 to 109 Da; particle diameter from ~1 nm to ~1 μm), but is especially well suited for high molecular weight samples such as virus-sized particles and extracellular vesicles. Separation takes place in an open channel where the flows control sample elution. Separation does not involve stationary phase, allowing gentle separation and good recoveries. The method is compatible with a wide variety of buffers. Coupling to various analytical detectors enables rapid assays on the molecular weight and size and their distribution, degradation, and aggregation of the sample components giving information on the sample quality. In addition to being an advanced analytical method, AF4 can be used in a semipreparative mode for purification. Here, we summarize archaeal virus production methods and virus purification by AF4 and provide examples on the steps that need optimization for obtaining good separation with the focus on halophilic archaeal viruses. Importantly, AF4 method is suitable for a variety of viruses and extracellular vesicles regardless of their host organism.
Collapse
Affiliation(s)
- Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|