1
|
Li H, Liu J, Wang J, Li Z, Yu J, Huang X, Wan B, Meng X, Zhang X. Improving the Anti-Tumor Effect of Indoleamine 2,3-Dioxygenase Inhibitor CY1-4 by CY1-4 Nano-Skeleton Drug Delivery System. J Funct Biomater 2024; 15:372. [PMID: 39728172 DOI: 10.3390/jfb15120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Background: CY1-4, 9-nitropyridine [2',3':4,5] pyrimido [1,2-α] indole -5,11- dione, is an indoleamine 2,3-dioxygenase (IDO) inhibitor and a poorly water-soluble substance. It is very important to increase the solubility of CY1-4 to improve its bioavailability and therapeutic effect. In this study, the mesoporous silica nano-skeleton carrier material Sylysia was selected as the carrier to load CY1-4, and then the CY1-4 nano-skeleton drug delivery system (MSNM@CY1-4) was prepared by coating the hydrophilic polymer material Hydroxypropyl methylcellulose (HPMC) and the lipid material Distearoylphosphatidyl-ethanolamine-poly(ethylene glycol)2000 (DSPE-PEG2000) to improve the anti-tumor effect of CY1-4. Methods: The solubility and dissolution of MSNM@CY1-4 were investigated, and its bioavailability, anti-tumor efficacy, IDO inhibitory ability and immune mechanism were evaluated in vivo. Results: CY1-4 was loaded in MSNM@CY1-4 in an amorphous form, and MSNM@CY1-4 could significantly improve the solubility (up to about 200 times) and dissolution rate of CY1-4. In vivo studies showed that the oral bioavailability of CY1-4 in 20 mg/kg MSNM@CY1-4 was about 23.9-fold more than that in 50 mg/kg CY1-4 suspension. In B16F10 tumor-bearing mice, MSNM@CY1-4 significantly inhibited tumor growth, prolonged survival time, significantly inhibited IDO activity in blood and tumor tissues, and reduced Tregs in tumor tissues and tumor-draining lymph nodes to improve anti-tumor efficacy. Conclusions: The nano-skeleton drug delivery system (MSNM@CY1-4) constructed in this study is a potential drug delivery platform for improving the anti-tumor effect of oral poorly water-soluble CY1-4.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junwei Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jingru Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuoyue Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jianming Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Huang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bingchuan Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China
| |
Collapse
|
2
|
Yu L, Xu L, Chen Y, Rong Y, Zou Y, Ge S, Wu T, Lai Y, Xu Q, Guo W, Liu W. IDO1 Inhibition Promotes Activation of Tumor-intrinsic STAT3 Pathway and Induces Adverse Tumor-protective Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1232-1243. [PMID: 38391297 DOI: 10.4049/jimmunol.2300545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.
Collapse
Affiliation(s)
- Longbo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunjie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yicheng Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Tiancong Wu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|