1
|
Retrato MDC, Nguyen AV, Ubhayasekera SJKA, Bergquist J. Comprehensive quantification of C4 to C26 free fatty acids using a supercritical fluid chromatography-mass spectrometry method in pharmaceutical-grade egg yolk powders intended for total parenteral nutrition use. Anal Bioanal Chem 2025:10.1007/s00216-025-05732-3. [PMID: 39849177 DOI: 10.1007/s00216-025-05732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
Free fatty acids (FFAs) are important energy sources and significant for energy transport in the body. They also play a crucial role in cellular oxidative stress responses, following cell membrane depolarization, making accurate quantification of FFAs essential. This study presents a novel supercritical fluid chromatography-mass spectrometry (SFC-MS) method using selected ion recording in negative electrospray ionization mode, enabling rapid quantification of 31 FFAs within 6 min without derivatization. FFAs are identified and quantified using an HSS C18 SB column and a secondary mobile phase consisting of methanol with formic acid by detecting their [M - H]- ions. Calibration curves showed strong linearity (R2 ≥ 0.9910), spanning 1000-12,000 ng/mL for short-chain FFAs and 50-1200 ng/mL for medium- and long-chain FFAs. The method achieves detection limits as low as 1 ng/µL for short-chain FFAs and 0.05 pg/µL for other FFAs per on-column injection. The method demonstrated high accuracy and precision, with bias and coefficients of variation maintained below 15% across five quality control levels. Freeze-thaw and autosampler stability studies confirmed the behavior of matrix-matched standards under optimal storage conditions. The validated method was applied to the analysis of pharmaceutical-grade egg yolk powders, using 13 deuterated FFAs as internal standards (IS) in comparison with heptadecanoic acid (C17:0). Significant variations in FFA quantification using two different IS approaches underscore the importance of selecting an appropriate IS. In summary, this study introduces a reliable and validated SFC-MS method for analyzing FFAs ranging from C4 to C26, requiring minimal sample preparation.
Collapse
Affiliation(s)
- Mark Dennis Chico Retrato
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - Anh Vu Nguyen
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden
| | - S J Kumari A Ubhayasekera
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden.
| | - Jonas Bergquist
- Department of Chemistry - Biomedical Center, Analytical Chemistry and Neurochemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
3
|
Batteau M, Bouju E, Ramirez-Romero A, Nuccio S, De Vaumas R, Delrue F, Faure K. Resolving phytosterols in microalgae using offline two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography coupled with quadrupole time-of-flight mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2278-2285. [PMID: 38525815 DOI: 10.1039/d3ay02261g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Sterols are unsaponifiable lipids resulting from plant metabolism that exhibit interesting bioactive properties. Microalgae are a major source of specific phytosterols, most of which are still not fully characterized. The similarity in sterol structures and the existence of positional isomers make the separation of phytosterols challenging. A method was developed based on an offline two-dimensional (2D) system, reversed-phase liquid chromatography (RPLC)-supercritical fluid chromatography (SFC)/quadrupole time-of-flight (Q-ToF) mass spectrometry, for the identification of sterols in microalgae. Subsequent positive-mode MS/MS was used to confirm the identified phytosterols. The 2D chromatogram exhibited a pattern related to the positions of the double bonds, which were confirmed by standard injection, enabling structural elucidation. The analysis of the unsaponifiable fraction of two algae, namely Scenedesmus obliquus, a freshwater microalgae, and Padina pavonica, a marine macroalgae, highlighted the ability of the method to distinguish a large number of sterol isomers.
Collapse
Affiliation(s)
- Magali Batteau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France.
| | - Elodie Bouju
- Extrasynthese, Impasse Jacquard, F-69730 Genay, France
| | - Adriana Ramirez-Romero
- MicroAlgae Processes Platform, CEA, CEA Tech Région Sud - Provence-Alpes Côte d'Azur, F-13108, Saint Paul lez Durance, France
| | - Sylvie Nuccio
- Extrasynthese, Impasse Jacquard, F-69730 Genay, France
| | | | - Florian Delrue
- MicroAlgae Processes Platform, CEA, CEA Tech Région Sud - Provence-Alpes Côte d'Azur, F-13108, Saint Paul lez Durance, France
| | - Karine Faure
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France.
| |
Collapse
|