1
|
Neves MI, Bidarra SJ, Magalhães MV, Torres AL, Moroni L, Barrias CC. Microstructured click hydrogels for cell contact guidance in 3D. Mater Today Bio 2023; 19:100604. [PMID: 36969695 PMCID: PMC10034521 DOI: 10.1016/j.mtbio.2023.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-KH hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration.
Collapse
|
2
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Packaging can mitigate the physical, chemical, and microbiological phenomena that affects food products’ quality and acceptability. However, the use of conventional packaging from non-renewable fossil sources generates environmental damage caused by the accumulation of non-biodegradable waste. Biodegradable films emerge as alternative biomaterials which are ecologically sustainable and offer protection and increase food product shelf life. This review describes the role of biodegradable films as packaging material and their importance regarding food quality. The study emphasizes polysaccharide-based biodegradable films and their use in foods with different requirements and the advances and future challenges for developing intelligent biodegradable films. In addition, the study explores the importance of the selection of the type of polysaccharide and its combination with other polymers for the generation of biodegradable films with functional characteristics. It also discusses additives that cause interactions between components and improve the mechanical and barrier properties of biodegradable films. Finally, this compilation of scientific works shows that biodegradable films are an alternative to protecting perishable foods, and studying and understanding them helps bring them closer to replacing commercial synthetic packaging.
Collapse
|
4
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
5
|
Self-aggregate performance of hexyl alginate ester derivative synthesized via SN2 reaction for controlled release of λ-cyhalothrin. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
7
|
Chen X, Zhu Q, Liu C, Li D, Yan H, Lin Q. Esterification of Alginate with Alkyl Bromides of Different Carbon Chain Lengths via the Bimolecular Nucleophilic Substitution Reaction: Synthesis, Characterization, and Controlled Release Performance. Polymers (Basel) 2021; 13:3351. [PMID: 34641167 PMCID: PMC8512272 DOI: 10.3390/polym13193351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
To extend the alginate applicability for the sustained release of hydrophobic medicine in drug delivery systems, the alkyl alginate ester derivative (AAD), including hexyl alginate ester derivative (HAD), octyl alginate ester derivative (OAD), decyl alginate ester derivative (DAD), and lauryl alginate ester derivative (LAD), were synthesized using the alkyl bromides with different lengths of carbon chain as the hydrophobic modifiers under homogeneous conditions via the bimolecular nucleophilic substitution (SN2) reaction. Experimental results revealed that the successful grafting of the hydrophobic alkyl groups onto the alginate molecular backbone via the SN2 reaction had weakened and destroyed the intramolecular hydrogen bonds, thus enhancing the molecular flexibility of the alginate, which endowed the AAD with a good amphiphilic property and a critical aggregation concentration (CAC) of 0.48~0.0068 g/L. Therefore, the resultant AAD could form stable spherical self-aggregated micelles with the average hydrodynamic diameter of 285.3~180.5 nm and zeta potential at approximately -44.8~-34.4 mV due to the intra or intermolecular hydrophobic associations. With the increase of the carbon chain length of the hydrophobic side groups, the AAD was more prone to self-aggregation, and therefore was able to achieve the loading and sustained release of hydrophobic ibuprofen. Additionally, the swelling and degradation of AAD microcapsules and the diffusion of the loaded drug jointly controlled the release rate of ibuprofen. Meanwhile, the AAD also displayed low cytotoxicity to the murine macrophage RAW264.7 cells. Thanks to the good amphiphilic property, colloidal interface activity, hydrophobic drug-loading performance, and cytocompatibility, the synthesized AAD exhibited a great potential for the development of hydrophobic pharmaceutical formulations.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qingmei Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Chang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dongze Li
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.C.); (Q.Z.)
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (C.L.); (D.L.)
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
8
|
Synthesis and self-assembly behavior of decyl alginate ester derivative via bimolecular nucleophilic substitution reaction. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04902-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Mohseni A, Kube M, Fan L, Roddick FA. Treatment of wastewater reverse osmosis concentrate using alginate-immobilised microalgae: Integrated impact of solution conditions on algal bead performance. CHEMOSPHERE 2021; 276:130028. [PMID: 33690032 DOI: 10.1016/j.chemosphere.2021.130028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Alginate can be used for entrapment of microalgal cells in gel beads to achieve high-rate treatment of wastewater and can overcome the difficulties of cell separation that would occur in suspended microalgae treatment systems. The potential for alginate beads to disintegrate in the presence of high ion concentrations could limit the use of alginate entrapment for treating municipal wastewater reverse osmosis concentrate (ROC). The combined effect of the pH, alkalinity, and salinity of the ROC that impact the physical stability, chemical characteristics, biomass production, and nutrient removal performance of alginate-entrapped Chlorella vulgaris for treating the ROC was investigated. Water adsorption resulting from the loss of calcium from the alginate matrix was the initiating cause of reduction of the algal bead stability. The combination of alkalinity >400 mg/L and pH ≥9.5 led to a >65% reduction in compressive strength and thus disintegration of beads during ROC treatment. However, alginate beads of C. vulgaris were sufficiently stable and were capable of nutrient remediation (up to 100% TP and 85% TN per treatment cycle of 48 h over a 10-day period) and biomass production (up to 340 mg/L/d) when salinity, pH, and alkalinity levels were <8 g TDS/L, 7-9.5, and <400 mg/L, respectively. Empirical models that were developed and validated could enable the prediction of the performance of the algal beads for various ROC compositions. This study enhances the insight and decision-making regarding the feasibility of the alginate-immobilised microalgal system for treating municipal wastewater ROC streams.
Collapse
Affiliation(s)
- Arash Mohseni
- WETT Research Centre and School of Engineering, RMIT University, Australia
| | - Matthew Kube
- WETT Research Centre and School of Engineering, RMIT University, Australia
| | - Linhua Fan
- WETT Research Centre and School of Engineering, RMIT University, Australia.
| | - Felicity A Roddick
- WETT Research Centre and School of Engineering, RMIT University, Australia
| |
Collapse
|
10
|
Kopplin G, Lervik A, Draget KI, Aachmann FL. Alginate gels crosslinked with chitosan oligomers - a systematic investigation into alginate block structure and chitosan oligomer interaction. RSC Adv 2021; 11:13780-13798. [PMID: 35423937 PMCID: PMC8697632 DOI: 10.1039/d1ra01003d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Three alginates with fundamentally different block structures, poly-M, poly-G, and poly-MG, have been investigated upon ionic crosslinking with chitosan oligosaccharides (CHOS), using circular dichroism (CD), rheology, and computer simulations, supporting the previously proposed gelling principle of poly-M forming zipper-like junction zones with chitosan (match in charge distance along the two polyelectrolytes) and revealing a unique high gel strength poly-MG chitosan gelling system. CD spectroscopy revealed an increased chiroptical activity exclusively for the poly-M chitosan gelling system, indicative of induced conformational changes and higher ordered structures. Rheological measurement revealed gel strengths (G' < 900 Pa) for poly-MG (1%) CHOS (0.3%) hydrogels, magnitudes of order greater than displayed by its poly-M analogue. Furthermore, the ionically crosslinked poly-MG chitosan hydrogel increased in gel strength upon the addition of salt (G' < 1600 at 50 mM NaCl), suggesting a stabilization of the junction zones through hydrophobic interactions and/or a phase separation. Molecular dynamics simulations have been used to further investigate these findings, comparing interaction energies, charge distances and chain alignments. These alginates are displaying high gel strengths, are known to be fully biocompatible and have revealed a broad range of tolerance to salt concentrations present in biological systems, proving high relevance for biomedical applications.
Collapse
Affiliation(s)
- Georg Kopplin
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Anders Lervik
- Department of Chemistry, Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Kurt I Draget
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology 7491 Trondheim Norway
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, Norwegian University of Science and Technology 7491 Trondheim Norway
| |
Collapse
|
11
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
12
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
13
|
Rezaie Shirmard L, Ghofrani M, Bahari Javan N, Bayrami S, Tavassoli A, Rezaie A, Amini M, Kebriaee-Zadeh A, Rouini MR, Dinarvand R, Rafiee-Tehrani M, Dorkoosh FA. Improving the in-vivo biological activity of fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate. Drug Dev Ind Pharm 2020; 46:318-328. [PMID: 31976771 DOI: 10.1080/03639045.2020.1721524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdieh Ghofrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nika Bahari Javan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Tavassoli
- Department of Analytical chemistry, University of Mazandaran, Babolsar, Iran
| | - Amir Rezaie
- School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Kebriaee-Zadeh
- Department of Pharmacoeconomy and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee-Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019; 25:1312-1334. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.
Collapse
Affiliation(s)
- Patricia Severino
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Classius F da Silva
- Universidade Federal de Sao Paulo, Instituto de Ciências Ambientais, Quimicas e Farmaceuticas, Departamento de Engenharia Quimica, Rua Sao Nicolau, 210, Diadema - SP, CEP 09.913-030, Brazil
| | - Luciana N Andrade
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Daniele de Lima Oliveira
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
15
|
Chu F, Zhang D, Hou Y, Qiu S, Wang J, Hu W, Song L. Construction of Hierarchical Natural Fabric Surface Structure Based on Two-Dimensional Boron Nitride Nanosheets and Its Application for Preparing Biobased Toughened Unsaturated Polyester Resin Composites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40168-40179. [PMID: 30365884 DOI: 10.1021/acsami.8b15355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It has been a big challenge to prepare the unsaturated polyester resin (UPR) composites with good fire safety, interfacial quality, and impact strength in an environmentally friendly way. In this study, to improve interfacial performance of fabric-reinforced UPR composites, nontoxic two-dimensional hexagonal boron nitride (h-BN) nanosheets were assembled on the surface of ramie fabrics, where sodium alginate acts as a green dispersant to disperse h-BN sheets during the process. Then, the biobased phosphorus-containing toughening agent (PCTA) was synthesized to simultaneously improve the impact strength and fire safety of the composite. With application of h-BN nanosheets-assembled fabric (AF) and 20 wt % of PCTA, the AF/UPR@PCTA20 composite presented the maximum 41.2% decrease in the value of peak heat release rate and a maximum 17.8% decrease in the value of total heat release, which also reached V-0 rating in the vertical burning test. Meanwhile, the AF/UPR@PCTA20 composite showed an obvious increase in limiting oxygen index, from 24.0 to 29.5% compared with RF/UPR. The flame retardant mechanism was investigated from gas phase and condensed phase. Furthermore, compared to neat RF/UPR composite, the AF/UPR@PCTA20 composite showed a significant 68.8% improvement in impact strength, implying an extreme toughening effect of PCTA on UPR composites. The research provides a viable green method for the development of environmentally friendly UPR composites in the future.
Collapse
Affiliation(s)
- Fukai Chu
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| | - Dichang Zhang
- Department of Physical Science , University of California , Irvine , California 92697 , United States
| | - Yanbei Hou
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| | - Shuilai Qiu
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| | - Junling Wang
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| | - Weizhao Hu
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| | - Lei Song
- State Key Laboratory of Fire Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , PR China
| |
Collapse
|
16
|
Wang X, Chang Z, Nie X, Li Y, Hu Z, Ma J, Wang W, Song T, Zhou P, Wang H, Yuan Z. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:153-163. [PMID: 30308299 DOI: 10.1016/j.nano.2018.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 01/31/2023]
Abstract
The clinical translation remains a major challenge for platinum drug loaded nanoparticle due to the complexity of composition and preparation. Here we employed only three ingredients to prepare Pt (IV) prodrug-loaded ligand-induced self-assembled nanoparticles (GA-ALG@Pt NPs) via facile one-pot route for liver tumor treatment. GA-ALG@Pt NPs were found equipped with intelligently ligand self-shielded property in which the internal GA could be induced to expose by initial cellular recognition, resulting in strengthened cellular uptake (20%-30%) and prolonged blood circulation time (3.43 times). Appreciable tumor targeting ability (2 times) and especially tumor selectivity (2.5 times) were obtained. Glutathione-triggered release of therapeutic agent generated satisfactory antitumor effect. Bio-safety is also a distinguishing feature of GA-ALG@Pt NPs that greatly relief the nephrotoxicity and systematic toxicity of cisplatin. This conveniently synthesized nanoparticle processes superior targeting capacity and biosecurity, supplying an effective approach to translational cancer therapy in the future.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Zhi Chang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Xin Nie
- Beijing Prosperous Biopharm Co., Ltd., Beijing, PR China
| | - Yingying Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - ZhenPeng Hu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Jinlong Ma
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China
| | - Teng Song
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Pei Zhou
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medical Center (Tianjin People's Hospital), Tianjin, PR China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
17
|
Bedê PM, Silva MHPD, Figueiredo ABHDS, Finotelli PV. Nanostructured magnetic alginate composites for biomedical applications. POLIMEROS 2017. [DOI: 10.1590/0104-1428.2267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal. INT J POLYM SCI 2017. [DOI: 10.1155/2017/6951212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sodium alginate is the most commonly used polymer matrix in microalgae immobilization for water treatment. However, the susceptibility of alginate matrixes to cation chelating agents and antigelling cation limits the use of alginates in estuarine and marine systems. Hence, the present study aims to investigate the stability of alginate bead in marine water and the feasibility of microalgae to grow when immobilized in alginate bead for marine water treatment. Different concentrations of alginate and hardening cation calcium were used to formulate beads. The beads were incubated in Guillard’s f/2 medium and shaken vigorously by using orbital shaker for 15 days. The results indicated that bead stability was enhanced by increasing alginate and CaCl2 concentrations. Subsequently, the marine microalga, Nannochloropsis sp., was immobilized in calcium alginate bead. The growth and ammoniacal-nitrogen (NH4+-N) uptake by immobilized cell were compared with free cell culture in f/2 medium. Specific growth rate of immobilized cell (0.063 hr−1) was significantly higher than free cell (0.027 hr−1). There was no significant difference on specific uptake rate of free cell and immobilized cell; but immobilized cell removed significantly more NH4+-N (82.2%) than free cell (47.3%) culture at the end of the experiment. The present study demonstrated the potential use of alginate immobilization technique in marine microalgae culture and water treatment simultaneously.
Collapse
|
19
|
|
20
|
Choudhary S, Reck JM, Carr AJ, Bhatia SR. Hydrophobically modified alginate for extended release of pharmaceuticals. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Soumitra Choudhary
- Department of Chemical Engineering University of Massachusetts Amherst Amherst MA USA
| | - Jason M. Reck
- Department of Chemical Engineering University of Massachusetts Amherst Amherst MA USA
| | - Amanda J. Carr
- Department of Chemistry Stony Brook University Stony Brook NY USA
| | - Surita R. Bhatia
- Department of Chemical Engineering University of Massachusetts Amherst Amherst MA USA
- Department of Chemistry Stony Brook University Stony Brook NY USA
| |
Collapse
|
21
|
Influence of chemically modified alginate esters on the preparation of microparticles by transacylation with protein in W/O emulsions. Carbohydr Polym 2017; 157:275-281. [DOI: 10.1016/j.carbpol.2016.09.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 11/21/2022]
|
22
|
Owusu-Nkwantabisah S, Gillmor JR, Switalski SC, Slater GL. An autonomous self-healing hydrogel based on surfactant-free hydrophobic association. J Appl Polym Sci 2017. [DOI: 10.1002/app.44800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Jeffrey R. Gillmor
- Technical Solutions Division; Eastman Kodak Company, 1999 Lake Avenue; Rochester New York 14650
| | - Steven C. Switalski
- Technical Solutions Division; Eastman Kodak Company, 1999 Lake Avenue; Rochester New York 14650
| | - Gary L. Slater
- Technical Solutions Division; Eastman Kodak Company, 1999 Lake Avenue; Rochester New York 14650
| |
Collapse
|
23
|
Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives. Carbohydr Polym 2016; 152:726-733. [DOI: 10.1016/j.carbpol.2016.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022]
|
24
|
Bodenberger N, Paul P, Kubiczek D, Walther P, Gottschalk KE, Rosenau F. A Novel Cheap and Easy to Handle Protein Hydrogel for 3D Cell Culture Applications: A High Stability Matrix with Tunable Elasticity and Cell Adhesion Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201600206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas Bodenberger
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| | - Patrick Paul
- Faculty of Natural Sciences; Institute of Experimental Physics; Ulm University; Albert-Einstein-Allee 11
| | - Dennis Kubiczek
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| | - Paul Walther
- Central Facility for Electron Microscopy; Ulm University; Albert-Einstein-Allee 11
| | - Kay-Eberhard Gottschalk
- Faculty of Natural Sciences; Institute of Experimental Physics; Ulm University; Albert-Einstein-Allee 11
| | - Frank Rosenau
- Faculty of Natural Sciences; Centre for Pharmaceuticals; Ulm University; Albert-Einstein-Allee 11
| |
Collapse
|
25
|
Shi G, Ding Y, Zhang X, Wu L, He F, Ni C. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1152-62. [DOI: 10.1080/09205063.2015.1080456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Chater PI, Wilcox M, Cherry P, Herford A, Mustar S, Wheater H, Brownlee I, Seal C, Pearson J. Inhibitory activity of extracts of Hebridean brown seaweeds on lipase activity. JOURNAL OF APPLIED PHYCOLOGY 2015; 28:1303-1313. [PMID: 27057089 PMCID: PMC4789227 DOI: 10.1007/s10811-015-0619-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 06/05/2023]
Abstract
The effect of three Hebridean brown seaweeds on lipase activity was assessed using a turbidimetric lipase activity assay and an in vitro simulation of the upper digestive tract. The preparations of Ascophyllum nodosum, Fucus vesiculosus, and Pelvetia canaliculata were tested; whole seaweed homogenate, sodium carbonate extract, and ethanol extracts (pellet and supernatant were tested separately). All extracts showed significant inhibition of lipase, suggesting multiple bioactive agents, potentially including alginates, fucoidans, and polyphenols. Whole homogenate extract of F. vesiculosus was the most potent inhibitor of Lipase (IC50 = 0.119 mg mL-1), followed by ethanol supernatant (IC50 = 0.159 mg mL-1) while ethanol pellet and sodium carbonate extract showed relatively weaker inhibition (IC50 = 0.360 mg mL-1 and IC50 = 0.969 mg mL-1 respectively). For A. nodosum and P. canaliculata, strongest inhibition occurred with ethanol pellet (IC50 = 0.238 and 0.228 mg mL-1, respectively). These inhibitory effects were validated in a model gut system. The data presented herein suggests the use of seaweed as a potential weight management tool is deserving of further investigation.
Collapse
Affiliation(s)
- Peter Ian Chater
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Mathew Wilcox
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Paul Cherry
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Andrew Herford
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Suraiami Mustar
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Hannah Wheater
- />Human Nutrition Research Centre, School of Agriculture, Food and Rural Development, Agriculture Building, Kings Road, Newcastle upon Tyne, NE1 7RU UK
| | - Iain Brownlee
- />Nanyang Polytechnic, Food and Human Nutrition Department, Newcastle University Office, 180 Ang Mo Kio, Avenue 8, 569830 Singapore, Singapore
| | - Chris Seal
- />Human Nutrition Research Centre, School of Agriculture, Food and Rural Development, Agriculture Building, Kings Road, Newcastle upon Tyne, NE1 7RU UK
| | - Jeffrey Pearson
- />Institute for Cell and Molecular Biosciences (ICaMB), Medical School, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
27
|
|
28
|
Synthesis enhancements for generating highly soluble tetrabutylammonium alginates in organic solvents. Carbohydr Polym 2014; 114:493-499. [DOI: 10.1016/j.carbpol.2014.07.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/10/2014] [Accepted: 07/27/2014] [Indexed: 11/22/2022]
|
29
|
Quesada-Pérez M, Adroher-Benítez I, Maroto-Centeno JA. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study. J Chem Phys 2014; 140:204910. [DOI: 10.1063/1.4879215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Studies on antineoplastic effect by adjusting ratios of targeted-ligand and antitumor drug. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1432-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Zhang H, Cai Y, Zhu C, Huang B, Yao B, Ni C. Degradation of Alginate and Polymerization of Styrene Initiated by Alginate Macroradicals under Ultrasonic Irradiation. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2012.670822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Guo H, Yang C, Hu Z, Wang W, Wu Y, Lai Q, Yuan Z. Ethylene glycol oligomer modified-sodium alginate for efficiently improving the drug loading and the tumor therapeutic effect. J Mater Chem B 2013; 1:5933-5941. [DOI: 10.1039/c3tb20968g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Wu M, Ni C, Yao B, Zhu C, Huang B, Zhang L. Covalently cross-linked and hydrophobically modified alginic acid hydrogels and their application as drug carriers. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.012] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.09.094] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Rheology and nanostructure of hydrophobically modified alginate (HMA) gels and solutions. Carbohydr Polym 2012; 87:524-530. [DOI: 10.1016/j.carbpol.2011.08.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/21/2022]
|
37
|
Photosensitive controlled release with polyethylene glycol–anthracene modified alginate. Eur J Pharm Biopharm 2011; 79:304-13. [DOI: 10.1016/j.ejpb.2011.03.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 11/20/2022]
|
38
|
Wong TW. Alginate graft copolymers and alginate-co-excipient physical mixture in oral drug delivery. J Pharm Pharmacol 2011; 63:1497-512. [PMID: 22060280 DOI: 10.1111/j.2042-7158.2011.01347.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations. KEY FINDINGS Drug release from alginate matrices can be modulated through using either co-excipients or graft copolymers via changing their swelling, erosion, hydrophobicity/hydrophilicity, porosity and/or drug adsorption capacity. However, it is not known if the drug delivery performance of formulations prepared using alginate graft copolymers is superior to those incorporating graft-equivalent co-excipient physically in a dosage form without grafting but at the corresponding graft weight, owing to limited studies being available. CONCLUSIONS The value of alginate graft copolymers as the potential alternative to alginate-co-excipient physical mixture in oral drug delivery cannot be entirely defined by past and present research. Such an issue is complicated by the lack of green chemistry graft copolymer synthesis approach, high grafting process cost, complications and hazards, and the formed graft copolymers having unknown toxicity. Future research will need to address these matters to achieve a widespread commercialization and industrial application of alginate graft copolymers in oral drug delivery.
Collapse
Affiliation(s)
- Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
39
|
Tang Y, Heaysman CL, Willis S, Lewis AL. Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opin Drug Deliv 2011; 8:1141-59. [PMID: 21619469 DOI: 10.1517/17425247.2011.588205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION As an essential complement to chemically crosslinked hydrogels, drug delivery systems based on physical hydrogels with self-assembled nanostructures are gaining increasing attention, owing to potential advantages of reduced toxicity, convenience of in situ gel formation, stimuli-responsiveness, reversible sol-gel transition, and improved drug loading and delivery profiles. AREAS COVERED In this review, drug delivery systems based on physical hydrogels are discussed according to their self-assembled nanostructures, such as micelles, layer-by-layer constructs, supramolecular inclusion complexes, polyelectrolyte complexes and crystalline structures. The driving forces of the self-assembly include hydrophobic interaction, hydrogen bonding, electrostatic interaction, π-π stacking and weak van der Waals forces. Stimuli-responsive properties of physical hydrogels, including thermo- and pH-sensitivity, are considered with particular focus on self-assembled nanostructures. EXPERT OPINION Fabricating self-assembled nanostructures in drug delivery hydrogels, via physical interactions between polymer-polymer and polymer-drug, requires accurately controlled macro- or small molecular architecture and a comprehensive knowledge of the physicochemical properties of the therapeutics. A variety of nanostructures within hydrogels, with which payloads may interact, provide useful means to stabilize the drug form and control its release kinetics.
Collapse
Affiliation(s)
- Yiqing Tang
- Biocompatibles UK Ltd, Chapman House, Farnham, Surrey, UK.
| | | | | | | |
Collapse
|
40
|
|
41
|
Chan ES, Wong SL, Lee PP, Lee JS, Ti TB, Zhang Z, Poncelet D, Ravindra P, Phan SH, Yim ZH. Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.07.044] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Colinet I, Dulong V, Mocanu G, Picton L, Le Cerf D. New amphiphilic and pH-sensitive hydrogel for controlled release of a model poorly water-soluble drug. Eur J Pharm Biopharm 2009; 73:345-50. [PMID: 19631739 DOI: 10.1016/j.ejpb.2009.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
Abstract
This paper presents the development of new pH-sensitive, amphiphilic and biocompatible hydrogels based on alginate-g-PCL, cross-linked with calcium ions to form beads, prepared for controlled delivery of poorly water-soluble drug. We have focused our study on the effect of the length of PCL chains (530 and 1250 g mol(-1)). Swelling profiles obtained clearly indicated that these hydrogels swell slightly (10-14%) in a simulated gastric fluid (pH 1.2), and strongly (700-1300% before disintegration) in a simulated intestinal fluid (pH 6.8). In both media, rates of swelling were lower for beads based on amphiphilic derivatives than for alginate/Ca2+ ones due to the hydrophobic PCL grafts, and decreased when hydrophobic character increased. A model drug, theophylline, was entrapped into these hydrogels and release studies were carried out. The drug was protected in acidic fluid (only 14-20% of release for alginate-g-PCL hydrogel against 35% of release for alginate hydrogel during 350 min). The drug is released completely in neutral fluid due to ion exchanges and disintegration of the hydrogel. PCL leads to decrease in the release kinetics in SIF (2h for alginate-g-PCL/Ca2+ beads against 1h for alginate/Ca2+ beads). It was demonstrated that the establishment of clusters inside beads by intramolecular interactions between PCL grafts of 530 g mol(-1) in salt media allowed to retain the drug and to slow down its release considerably.
Collapse
Affiliation(s)
- I Colinet
- University of Rouen, Mont Saint Aignan, France
| | | | | | | | | |
Collapse
|
43
|
Illingsworth ML, Wang W, McCarney JP, Hughes KA, Trotter KJ, Stapleton RA, Chabot JR, Siochi EJ, Kotlarchyk M. Pendent polyimides using mellitic acid dianhydride. III. The effect of pendent group functionality on polymer properties. J Appl Polym Sci 2009. [DOI: 10.1002/app.29986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Yao B, Ni C, Xiong C, Zhu C, Huang B. Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 2009; 33:457-63. [DOI: 10.1007/s00449-009-0349-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
45
|
Rezaii N, Khodagholi F. Evaluation of Chaperone-like Activity of Alginate: Microcapsule and Water-soluble Forms. Protein J 2009; 28:124-30. [DOI: 10.1007/s10930-009-9172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Vallée F, Müller C, Durand A, Schimchowitsch S, Dellacherie E, Kelche C, Cassel JC, Leonard M. Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohydr Res 2009; 344:223-8. [DOI: 10.1016/j.carres.2008.10.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/28/2008] [Accepted: 10/31/2008] [Indexed: 11/28/2022]
|
47
|
Koç ML, Özdemir Ü, İmren D. Prediction of the pH and the temperature-dependent swelling behavior of Ca2+-alginate hydrogels by artificial neural networks. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
The drug release profile from calcium-induced alginate gel beads coated with an alginate hydrolysate. Molecules 2007; 12:2559-66. [PMID: 18065958 DOI: 10.3390/12112559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022] Open
Abstract
Calcium-induced alginate gel bead (Alg-Ca) coated with an alginate hydrolysate (Alg), e.g. the guluronic acid block (GB) was prepared and the model drug, hydrocortisone release profiles were investigated under simulated gastrointestinal conditions. Their molecular weights were one sixth or one tenth that of Alg and the diffraction patterns of the hydrolysates resembled that of Alg. The drug release rate from Alg-Ca coated with GB apparently lowered than that of Alg-Ca (coating-free) in the gastric juice (pH1.2). And the coating did not resist the disintegration of Alg-Ca in the intestinal juice (pH 6.8) and the gel erosion accelerated the drug release. On the other hand, for the coated Alg-Ca containing chitosan, the drug release showed zero-order kinetics without rapid erosion of Alg-Ca. The drug release rate from Alg-Ca was able to be controlled by the coating and modifying the composition of the gel matrix.
Collapse
|
49
|
Broderick E, Lyons H, Pembroke T, Byrne H, Murray B, Hall M. The characterisation of a novel, covalently modified, amphiphilic alginate derivative, which retains gelling and non-toxic properties. J Colloid Interface Sci 2006; 298:154-61. [PMID: 16414061 DOI: 10.1016/j.jcis.2005.12.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022]
Abstract
The characterisation of a novel amphiphilic material, Alg-C4, produced from butanol linked by esterification to alginate is presented. The novel derivative retains the gelling and non-toxic properties of native alginate. FTIR spectra of Alg-C4 contained the characteristic hydroxyl and carboxyl bands, but also featured additional peaks at 1736 and 1134 cm(-1), indicating the presence of ester bonds. NMR studies showed the presence of butyl groups. The endothermic peak and exothermic peak present in the DSC thermogram of native alginate were also apparent in the Alg-C4 thermogram, but had shifted to lower temperatures (from 106 to 87 degrees C and from 254 to 247 degrees C, respectively). In addition, the exothermic peak was significantly reduced for Alg-C4 (5 mW compared to 20 mW in native alginate). Scanning electron microscopy was used to examine surface topography. The native alginate beads appeared smooth while Alg-C4 beads had a different, rougher appearance. Using circular dichroism it was found that the ratio of mannuronic to guluronic residues in the Alg-C4 was markedly increased compared to the native alginate (1.33 to 2.47), suggesting the preferential esterification of butanol to the guluronic residues. Exposure of ovarian granulosa cells in vitro to the Alg-C4 material demonstrated that granulosa cell viability (MTT test) was unchanged when compared to native alginate, which is regarded as non-toxic. The novel material is very stable, giving identical FTIR, DSC and gelling performance after 12 months storage at temperatures ranging from 10 to 20 degrees C. The data support the successful preparation of a stable modified alginate with characteristic hydrophilic properties and, in addition, a novel hydrophobic character.
Collapse
Affiliation(s)
- Eilish Broderick
- Department of Chemical and Life Sciences, Institute of Technology, Tralee, Co. Kerry, Ireland
| | | | | | | | | | | |
Collapse
|
50
|
Madziva H, Kailasapathy K, Phillips M. Evaluation of alginate–pectin capsules in Cheddar cheese as a food carrier for the delivery of folic acid. Lebensm Wiss Technol 2006. [DOI: 10.1016/j.lwt.2004.12.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|