1
|
Clinically Relevant Insulin Degludec and its Interaction with Polysaccharides: A Biophysical Examination. Polymers (Basel) 2020; 12:polym12020390. [PMID: 32050432 PMCID: PMC7077624 DOI: 10.3390/polym12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/17/2022] Open
Abstract
Protein polysaccharide complexes have been widely studied for multiple industrial applications and are popular due to their biocompatibility. Insulin degludec, an analogue of human insulin, exists as di-hexamer in pharmaceutical formulations and has the potential to form long multi-hexamers in physiological environment, which dissociate into monomers to bind with receptors on the cell membrane. This study involved complexation of two negatively charged bio-polymers xanthan and alginate with clinically-relevant insulin degludec (PIC). The polymeric complexations and interactions were investigated using biophysical methods. Intrinsic viscosity [η] and particle size distribution (PSD) of PIC increased significantly with an increase in temperature, contrary to the individual components indicating possible interactions. [η] trend was X > XA > PIC > A > IDeg. PSD trend was X > A > IDeg > XA > PIC. Zeta (ζ)- potential (with general trend of IDeg < A < XA < X ≈ PIC) revealed stable interaction at lower temperature which gradually changed with an increase in temperature. Likewise, sedimentation velocity indicated stable complexation at lower temperature. With an increase in time and temperature, changes in the number of peaks and area under curve were observed for PIC. Conclusively, stable complexation occurred among the three polymers at 4 °C and 18 °C and the complex dissociated at 37 °C. Therefore, the complex has the potential to be used as a drug delivery vehicle.
Collapse
|
2
|
Ismail FH, Marpani F, Othman NH, Nik Him NR. Simultaneous separation and biocatalytic conversion of formaldehyde to methanol in enzymatic membrane reactor. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1705795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Farazatul Harnani Ismail
- Integrated Separation Technology Research Group (i-STRonG), Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Fauziah Marpani
- Integrated Separation Technology Research Group (i-STRonG), Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nur Hidayati Othman
- Membrane Technology Research Group, Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nik Raikhan Nik Him
- Industrial Process Reliability & Sustainability (INPRES), Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Asif MB, Hai FI, Dhar BR, Ngo HH, Guo W, Jegatheesan V, Price WE, Nghiem LD, Yamamoto K. Impact of simultaneous retention of micropollutants and laccase on micropollutant degradation in enzymatic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 267:473-480. [PMID: 30036848 DOI: 10.1016/j.biortech.2018.07.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/30/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
This study systematically compares the performance of ultrafiltration (UF) and nanofiltration (NF) based enzymatic membrane bioreactors (EMBRs) for the degradation of five micropollutants, namely atrazine, carbamazepine, sulfamethoxazole, diclofenac and oxybenzone to elucidate the impact of effective membrane retention of micropollutants on their degradation. Based on the permeate quality, NF-EMBR achieved 92-99.9% micropollutant removal (i.e., biodegradation + membrane retention), while the removal of these micropollutants by UF-EMBR varied from 20 to 85%. Mass balance analysis revealed that micropollutant degradation was improved by 15-30% in NF-EMBR as compared to UF-EMBR, which could be attributed to the prolonged contact time between laccase and micropollutants following their effective retention by the NF membrane. A small decline in permeate flux was observed during EMBR operation. However, the flux could be recovered by flushing the membrane with permeate.
Collapse
Affiliation(s)
- Muhammad B Asif
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Bipro R Dhar
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Huu H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kazuo Yamamoto
- Environmental Science Centre, Department of Urban Engineering, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Mahobia S, Bajpai J, Bajpai AK. Soya protein as possible potential nanocarriers for in-vitro oral delivery of insulin in simulated gastric fluids (SGFs). INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1327435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Swati Mahobia
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| | - Jaya Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| | - A. K. Bajpai
- Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
6
|
Salgın S. Effects of ionic environment on the interfacial interactions between α-amylase and polyether sulphone membranes. SURF INTERFACE ANAL 2010. [DOI: 10.1002/sia.3716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Eryomin AN, Zhukovskaya LA, Mikhailova RV. Effect of salts and Triton X-100 on ultrafiltration purification and properties of extracellular glucose oxidase from Penicillium adametzii LF F-2044.1. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809030028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Appl Biochem Biotechnol 2008; 147:23-32. [PMID: 18351297 DOI: 10.1007/s12010-007-8081-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
It is well known that lignin degradation is a key step in the natural process of biomass decay whereby oxidative enzymes such as laccases and high redox potential ligninolytic peroxidases and oxidases play a central role. More recently, the importance of these enzymes has increased because of their prospective industrial use for the degradation of the biomass lignin to increase the accessibility of the cellulose and hemicellulose moieties to be used as renewable material for the production of fuels and chemicals. These biocatalysts also present potential application on environmental biocatalysis for the degradation of xenobiotics and recalcitrant pollutants. However, the cost for these enzymes production, separation, and concentration must be low to permit its industrial use. This work studied the concentration of lignin peroxidase (LiP), produced by Streptomyces viridosporus T7A, by ultrafiltration, in a laboratory-stirred cell, loaded with polysulfone (PS) or cellulose acetate (CA) membranes with molecular weight cutoffs (MWCO) of 10, 20, and 50 KDa. Experiments were carried out at 25 degrees C and pH 7.0 in accordance to the enzyme stability profile. The best process conditions and enzyme yield were obtained using a PS membrane with 10 KDa MWCO, whereby it was observed a tenfold LiP activity increase, reaching 1,000 U/L and 90% enzyme activity upholding.
Collapse
|
10
|
Salgın S, Takaç S. Effects of Additives on the Activity and Enantioselectivity ofCandida rugosa Lipase in a Biphasic Medium. Chem Eng Technol 2007. [DOI: 10.1002/ceat.200700285] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Salgın S. Effects of Ionic Environments on Bovine Serum Albumin Fouling in a Cross-Flow Ultrafiltration System. Chem Eng Technol 2007. [DOI: 10.1002/ceat.200600342] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Lin Y, Yao Y, Yang X, Wei N, Li X, Gong P, Li R, Wu D. Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinning. J Appl Polym Sci 2007. [DOI: 10.1002/app.26445] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|