1
|
Godoy-Gallardo M, Labay C, Trikalitis VD, Kempen PJ, Larsen JB, Andresen TL, Hosta-Rigau L. Multicompartment Artificial Organelles Conducting Enzymatic Cascade Reactions inside Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15907-15921. [PMID: 28117959 DOI: 10.1021/acsami.6b16275] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell organelles are subcellular structures entrapping a set of enzymes to achieve a specific functionality. The incorporation of artificial organelles into cells is a novel medical paradigm which might contribute to the treatment of various cell disorders by replacing malfunctioning organelles. In particular, artificial organelles are expected to be a powerful solution in the context of enzyme replacement therapy since enzymatic malfunction is the primary cause of organelle dysfunction. Although several attempts have been made to encapsulate enzymes within a carrier vehicle, only few intracellularly active artificial organelles have been reported to date and they all consist of single-compartment carriers. However, it is noted that biological organelles consist of multicompartment architectures where enzymatic reactions are executed within distinct subcompartments. Compartmentalization allows for multiple processes to take place in close vicinity and in a parallel manner without the risk of interference or degradation. Here, we report on a subcompartmentalized and intracellularly active carrier, a crucial step for advancing artificial organelles. In particular, we develop and characterize a novel capsosome system, which consists of multiple liposomes and fluorescent gold nanoclusters embedded within a polymer carrier capsule. We subsequently demonstrate that encapsulated enzymes preserve their activity intracellularly, allowing for controlled enzymatic cascade reaction within a host cell.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Cédric Labay
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Vasileios D Trikalitis
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Paul J Kempen
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Jannik B Larsen
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology, Centre for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark , Building 423, 2800, Lyngby, Denmark
| |
Collapse
|
2
|
Polak R, Lim RM, Beppu MM, Pitombo RNM, Cohen RE, Rubner MF. Liposome-Loaded Cell Backpacks. Adv Healthc Mater 2015; 4:2832-41. [PMID: 26616471 DOI: 10.1002/adhm.201500604] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/22/2015] [Indexed: 12/19/2022]
Abstract
Cell backpacks, or micron-scale patches of a few hundred nanometers in thickness fabricated by layer-by-layer (LbL) assembly, are potentially useful vehicles for targeted drug delivery on the cellular level. In this work, echogenic liposomes (ELIPs) containing the anticancer drug doxorubicin (DOX) are embedded into backpacks through electrostatic interactions and LbL assembly. Poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA)n , and poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/SPS)n film systems show the greatest ELIP incorporation of the films studied while maintaining the structural integrity of the vesicles. The use of ELIPs for drug encapsulation into backpacks facilitates up to three times greater DOX loading compared to backpacks without ELIPs. Cytotoxicity studies reveal that monocyte backpack conjugates remain viable even after 72 h, demonstrating promise as drug delivery vehicles. Because artificial vesicles can load many different types of drugs, ELIP containing backpacks offer a unique versatility for broadening the range of possible applications for cell backpacks.
Collapse
Affiliation(s)
- Roberta Polak
- School of Pharmaceutical Sciences; University of Sao Paulo; USP Sao Paulo SP 05508-900 Brazil
- Department of Materials Science and Engineering; Massachusetts Institute of Technology (MIT); Cambridge M,A 02139 USA
| | - Rosanna M. Lim
- Department of Chemical Engineering; Massachusetts Institute of Technology (MIT); Cambridge MA 02139 USA
| | - Marisa M. Beppu
- School of Chemical Engineering; University of Campinas; UNICAMP; Campinas SP 13083-852 Brazil
| | - Ronaldo N. M. Pitombo
- School of Pharmaceutical Sciences; University of Sao Paulo; USP Sao Paulo SP 05508-900 Brazil
| | - Robert E. Cohen
- Department of Chemical Engineering; Massachusetts Institute of Technology (MIT); Cambridge MA 02139 USA
| | - Michael F. Rubner
- Department of Materials Science and Engineering; Massachusetts Institute of Technology (MIT); Cambridge M,A 02139 USA
| |
Collapse
|
3
|
Wang D, Wu Z, Gao A, Zhang W, Kang C, Tao Q, Yang P. Soft landing of cell-sized vesicles on solid surfaces for robust vehicle capture/release. SOFT MATTER 2015; 11:3094-3099. [PMID: 25787226 DOI: 10.1039/c5sm00049a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Based on a concept of a smooth and steady landing of fragile objects without destruction via a soft cushion, we have developed a model for the soft landing of deformable lipid giant unilamellar vesicles (GUVs) on solid surfaces. The foundation for a successful soft landing is a solid substrate with a two-layer coating, including a bottom layer of positively charged lysozymes and an upper lipid membrane layer. We came to a clear conclusion that anionic GUVs when sedimented on a surface, the vesicle rupture occurs upon the direct contact with the positively charged lysozyme layer due to the strong coulombic interactions. In contrast, certain separation distances was achieved by the insertion of a soft lipid membrane cushion between the charged GUVs and the lysozyme layer, which attenuated the coulombic force and created a mild buffer zone, ensuring the robust capture of GUVs on the substrate without their rupture. The non-covalent bonding facilitated a fully reversible stimuli-responsive capture/release of GUVs from the biomimetic solid surface, which has never been demonstrated before due to the extreme fragility of GUVs. Moreover, the controllable capture/release of cells has been proven to be of vital importance in biotechnology, and similarity the present approach to capture/release cells is expected to open the previously inaccessible avenues of research.
Collapse
Affiliation(s)
- Dehui Wang
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | |
Collapse
|
4
|
Microcontact printing large-area pattern of catalytic Pd ink with a polyelectrolyte modified stamp for selective electroless deposition of nickel on glass substrate. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Li X, Wang R, Wicaksana F, Zhao Y, Tang C, Torres J, Fane AG. Fusion behaviour of aquaporin Z incorporated proteoliposomes investigated by quartz crystal microbalance with dissipation (QCM-D). Colloids Surf B Biointerfaces 2013; 111:446-52. [DOI: 10.1016/j.colsurfb.2013.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
6
|
Lee I. Molecular self-assembly: smart design of surface and interface via secondary molecular interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2476-2489. [PMID: 23342993 DOI: 10.1021/la304123b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The molecular self-assembly of macromolecular species such as polymers, colloids, nano/microparticles, proteins, and cells when they interface with a solid/substrate surface has been studied for many years, especially in terms of molecular interactions, adsorption, and adhesion. Such fundamental knowledge is practically important in designing smart micro- and nanodevices and sensors, including biologically implantable ones. This review gives a brief sketch of molecular self-assembly and nanostructured multifunctional thin films that utilize secondary molecular interactions at surfaces and interfaces.
Collapse
Affiliation(s)
- Ilsoon Lee
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1226, USA.
| |
Collapse
|
7
|
Sugihara K, Stucki J, Isa L, Vörös J, Zambelli T. Electrically induced lipid migration in non-lamellar phase. J Colloid Interface Sci 2012; 386:421-7. [PMID: 22959151 DOI: 10.1016/j.jcis.2012.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/16/2022]
Abstract
Inverted hexagonal blocks of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipid adsorbed on a polyethyleneimine (PEI)-coated surface in deionized water transformed its shape upon the application of an electric field, forming lipid objects in a variety of shapes (e.g. lines with a width of 10-50 μm). The phenomenon was driven by the electrophoresis, because the zwitterionic lipid, DOPE turned out to be highly negatively charged in deionized water. The interaction between DOPE and the PEI surface stabilized the system, assuring a lifetime over several weeks for the formed structures after the electric field was switched off. The free-drawing of microscopic objects (lines, crosses, and jelly fish) was also achieved by controlling the direction of the lipid movement with the field direction.
Collapse
Affiliation(s)
- Kaori Sugihara
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
8
|
Gokhale AA, Lee I. Cellulase Immobilized Nanostructured Supports for Efficient Saccharification of Cellulosic Substrates. Top Catal 2012. [DOI: 10.1007/s11244-012-9891-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Narui Y, Salaita KS. Dip-pen nanolithography of optically transparent cationic polymers to manipulate spatial organization of proteolipid membranes. Chem Sci 2012. [DOI: 10.1039/c1sc00475a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Sugihara K, Vörös J, Zambelli T. A gigaseal obtained with a self-assembled long-lifetime lipid bilayer on a single polyelectrolyte multilayer-filled nanopore. ACS NANO 2010; 4:5047-5054. [PMID: 20687537 DOI: 10.1021/nn100773q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A lipid bilayer with gigaohm resistance was fabricated over a single 800 nm pore in a Si3N4 chip using 50 nm liposomes. The nanopore was prefilled with a polyelectrolyte multilayer (PEM) that triggered the spontaneous fusion of the lipid vesicles. Pore-forming peptide melittin was incorporated in the bilayer, and single channel activities were monitored for a period of 2.5 weeks. The long lifetime of the system enabled the observation of the time-dependent stabilization effect of the melittin open state upon bias application.
Collapse
Affiliation(s)
- Kaori Sugihara
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Vermette P. Liposome characterization by quartz crystal microbalance measurements and atomic force microscopy. Methods Enzymol 2010; 465:43-73. [PMID: 19913161 DOI: 10.1016/s0076-6879(09)65003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
This chapter reviews liposome characterization by quartz crystal microbalance (QCM) measurements and atomic force microscopy (AFM). In many studies, AFM imaging is simply used to image liposomes with resolution often that does not allow morphological analysis. Although liposome size can be obtained by processing AFM images, it is found that liposomes flatten upon surface adsorption or immobilization. Liposome stability and stiffness have been characterized by using AFM imaging or AFM force measurements, although the latter method, using a microsphere attached on the AFM cantilever, seems more appropriate to limit liposome damage and to obtain more quantitative analysis, such as the Young's modulus. Investigation of liposome layers by QCM revealed that liposomes can be detected from a combined analysis of frequency and bandwidth shifts. However, QCM by itself provides only limited information on liposomes. QCM can be used to assess the presence of a layer and also to discriminate between rigid and viscoelastic ones. Liposome properties have been derived from QCM curves, but often this requires making hypotheses that are difficult to assess. AFM and QCM analyses need to be combined with other techniques to provide complementary information.
Collapse
Affiliation(s)
- Patrick Vermette
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
12
|
Chandrawati R, Städler B, Postma A, Connal LA, Chong SF, Zelikin AN, Caruso F. Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules. Biomaterials 2009; 30:5988-98. [DOI: 10.1016/j.biomaterials.2009.07.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/22/2009] [Indexed: 01/17/2023]
|
13
|
Oreopoulos J, Yip CM. Combinatorial microscopy for the study of protein–membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. J Struct Biol 2009; 168:21-36. [DOI: 10.1016/j.jsb.2009.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 02/06/2023]
|
14
|
Tarasova A, Griesser HJ, Meagher L. AFM study of the stability of a dense affinity-bound liposome layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7371-7377. [PMID: 18547080 DOI: 10.1021/la8002959] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liposomes that are surface-bound to a biomaterial such as a contact lens are of interest for localized delivery of therapeutic agents, but it is not known whether such liposome layers are sufficiently robust. The stability of a dense, PEG-functionalized layer of liposomes, affinity-bound onto a multilayer coated surface, was tested under various stress conditions using colloid-probe atomic force miscroscopy (AFM). The different stress effects were generated by varying the applied normal load of the probe and the impinging fluid shear through different approach velocities and by varying the applied lateral forces by scanning under increasing force loads. The effect of applied forces (normal and lateral) was further investigated by coating the probe with a layer of albumin. The liposomes remained intact following the ramping of both protein-coated and uncoated probes under the normal and lateral loads. The low-fouling nature of these liposomes, with respect to nonspecific protein adsorption, was also demonstrated from the interaction force measurements which showed only weak adhesion from the protein layer during the contact period of the albumin-coated probe. The observed adhesive interactions were concluded to be a direct result of the applied load from the probe, during the force measurements, rather than from attraction of the protein molecules for the surface-bound liposomes. The low frictional response of the liposome layer indicated the viscoelastic nature of these molecules, which enabled liposome structure retention during the continuous load application. The demonstrated stability of the liposomes presents a system of viable and localized drug delivery in, for example, ophthalmic applications.
Collapse
Affiliation(s)
- Anna Tarasova
- CSIRO Molecular and Health Technologies, Bag 10, Bayview Avenue, Clayton, Victoria 3168, Australia.
| | | | | |
Collapse
|
15
|
Linke GT, Lipowsky R, Gruhn T. Adhesion of fluid vesicles at chemically structured substrates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 24:217-227. [PMID: 18046505 DOI: 10.1140/epje/i2007-10232-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 10/16/2007] [Indexed: 05/25/2023]
Abstract
The adhesion of fluid vesicles at chemically structured substrates is studied theoretically via Monte Carlo simulations. The substrate surface is planar and repels the vesicle membrane apart from a single surface domain gamma , which strongly attracts this membrane. If the vesicle is larger than the attractive gamma domain, the spreading of the vesicle onto the substrate is restricted by the size of this surface domain. Once the contact line of the adhering vesicle has reached the boundaries of the gamma domain, further deflation of the vesicle leads to a regime of low membrane tension with pronounced shape fluctuations, which are now governed by the bending rigidity. For a circular gamma domain and a small bending rigidity, the membrane oscillates strongly around an average spherical cap shape. If such a vesicle is deflated, the contact area increases or decreases with increasing osmotic pressure, depending on the relative size of the vesicle and the circular gamma domain. The lateral localization of the vesicle's center of mass by such a domain is optimal for a certain domain radius, which is found to be rather independent of adhesion strength and bending rigidity. For vesicles adhering to stripe-shaped surface domains, the width of the contact area perpendicular to the stripe varies nonmonotonically with the adhesion strength.
Collapse
Affiliation(s)
- G T Linke
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, D-14424 Potsdam, Germany
| | | | | |
Collapse
|
16
|
Fischlechner M, Reibetanz U, Zaulig M, Enderlein D, Romanova J, Leporatti S, Moya S, Donath E. Fusion of enveloped virus nanoparticles with polyelectrolyte-supported lipid membranes for the design of bio/nonbio interfaces. NANO LETTERS 2007; 7:3540-3546. [PMID: 17960947 DOI: 10.1021/nl0723580] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fusion of lipid-enveloped viruses with endosomal membranes triggered by low pH in the endosome is a key step in the course of viral infection. This ubiquitous mechanism can be used to integrate functional nanoparticles of viral origin into composite materials consisting of a polyelectrolyte multilayer with an adsorbed lipid membrane in a natural and biomimetic way. Polyelectrolyte multilayers as the support for the lipid membrane are a versatile means to combine the biological functions of the viral surface with the multiplicity of polyelectrolyte borne functions into a novel bio/nonbio composite material.
Collapse
Affiliation(s)
- Martin Fischlechner
- Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|