1
|
Abuaf M, Mastai Y. Synthesis of Multi Amino Acid Chiral Polymeric Microparticles for Enantioselective Chemistry. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Meir Abuaf
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| | - Yitzhak Mastai
- Department of Chemistry and Institute of Nanotechnology Bar‐Ilan University Ramat‐Gan 52900 Israel
| |
Collapse
|
2
|
Shukla N, Gellman AJ. Chiral metal surfaces for enantioselective processes. NATURE MATERIALS 2020; 19:939-945. [PMID: 32747699 DOI: 10.1038/s41563-020-0734-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
Chiral surfaces are critical components of enantioselective heterogeneous processes such as those used to prepare enantiomerically pure pharmaceuticals. While the majority of chiral surfaces in practical use are based on achiral materials whose surfaces have been modified with enantiomerically pure chiral adsorbates, there are many inorganic materials with valuable surface properties that could be rendered enantiospecific, if their surfaces were intrinsically chiral. This Perspective discusses recent developments in the fabrication of intrinsically chiral surfaces exhibiting enantiospecific adsorption, surface chemistry and electron emission. We propose possible paths to the scalable fabrication of high-surface-area, enantiomerically pure surfaces and discuss opportunities for future progress.
Collapse
Affiliation(s)
- Nisha Shukla
- Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrew J Gellman
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Price AJ, Johnson ER. Theoretical investigation of amino-acid adsorption on hydroxylated quartz surfaces: dispersion can determine enantioselectivity. Phys Chem Chem Phys 2020; 22:16571-16578. [PMID: 32658226 DOI: 10.1039/d0cp02827d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chiral mineral surfaces, such as quartz, are attractive substrates for use in enantioselective separation and may have contributed to the origin of biological homochirality. In this work, we apply density-functional theory and the exchange-hole dipole moment (XDM) dispersion model to study the adsorption of 5 amino acids (glycine, serine, alanine, valine, and phenylalanine) on a hydroxylated α-quartz (0001) surface. It is demonstrated that London dispersion is responsible for 30-50% of the total adsorption energies and its inclusion or omission can reverse predictions of enantioselectivity. Differing dispersion stabilization, caused by the opposing side-chain placements relative to the quartz surface, lead to differences of 1.0 and 1.8 kcal mol-1 in the adsorption energies of the alanine and phenylalanine enantiomers, respectively. These results are consistent with a 3-point model, with the hydrogen-bonding sites conserved and variations in the dispersion interactions determining enantioselectivity.
Collapse
Affiliation(s)
- Alastair J Price
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
4
|
Monier M, Shafik AL, Abdel-Latif D. Surface molecularly imprinted amino-functionalized alginate microspheres for enantio-selective extraction of l-ascorbic acid. Carbohydr Polym 2018; 195:652-661. [DOI: 10.1016/j.carbpol.2018.04.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/24/2022]
|
5
|
Suga K, Tauchi A, Ishigami T, Okamoto Y, Umakoshi H. Preferential Adsorption of l-Histidine onto DOPC/Sphingomyelin/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol Liposomes in the Presence of Chiral Organic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3831-3838. [PMID: 28272888 DOI: 10.1021/acs.langmuir.6b03264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effect of organic acids such as mandelic acid (MA) and tartaric acid (TA) on the adsorption behavior of both histidine (His) and propranolol (PPL) onto liposomes. A cationic and heterogeneous liposome prepared using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin (SM)/3β-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Ch) in a ratio of (4/3/3) showed the highest adsorption efficiency of MA and TA independent of chirality, while neutral liposome DOPC/SM/cholesterol = (4/3/3) showed low efficiency. As expected, electrostatic interactions were dominant in MA or TA adsorption onto DOPC/SM/DC-Ch = (4/3/3) liposomes, suggesting that organic acids had adsorbed onto SM/DC-Ch-enriched domains. The adsorption behaviors of organic acids onto DOPC/SM/DC-Ch = (4/3/3) were governed by Langmuir adsorption isotherms. For adsorption, the membrane polarities slightly decreased (i.e., membrane surface was hydrophilic), but no alterations in membrane fluidity were observed. In the presence of organic acids that had been preincubated with DOPC/SM/DC-Ch = (4/3/3), the adsorption of l- and d-His onto those liposomes was examined. Preferential l-His adsorption was dramatically prevented only in the presence of l-MA, suggesting that the adsorption sites for l-His and l-MA on DOPC/SM/DC-Ch = (4/3/3) liposomes are competitive, while those for l-His and d-MA, l-TA, and d-TA are isolated.
Collapse
Affiliation(s)
- Keishi Suga
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Tauchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Takaaki Ishigami
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Elfassy E, Basel Y, Mastai Y. Crystallization of amino acids at the chiral ionic liquid/water interface. CrystEngComm 2016. [DOI: 10.1039/c6ce01726f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Zhou X, Sun J, Yin T, Le F, Yang L, Liu Y, Liu J. Enantiomers of cysteine-modified SeNPs (d/lSeNPs) as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease. J Mater Chem B 2015; 3:7764-7774. [DOI: 10.1039/c5tb00731c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral molecules, which selectively target and inhibit amyloid β-peptide (Aβ) aggregation, have potential use as therapeutic agents for the treatment of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Xianbo Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jing Sun
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tiantian Yin
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Fangling Le
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Licong Yang
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yanan Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
8
|
Lingenfelder M, Bejarano-Villafuerte Á, van der Meijden MW, Kellogg RM, Amabilino DB. Localized crystallization of enantiomeric organic compounds on chiral micro-patterns from various organic solutions. Chemistry 2014; 20:10466-74. [PMID: 25042203 DOI: 10.1002/chem.201303062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Indexed: 11/11/2022]
Abstract
The controlled crystallization of enantiomers of an organic compound (a cyclic phosphoric acid derivative) on templated micro-patterned functionalised surfaces is demonstrated. Areas where a complementary chiral thiol has been located were effective heterogeneous nucleation centres when a solution of the compound is evaporated slowly. Various organic solvents were employed, which present a challenge with respect to other examples when water is used. The solvent and the crystallization method have an important influence on the crystal growth of these compounds. When chloroform was employed, well-defined crystals grow away from the surface, whereas crystals grow in the plane from solutions in isopropanol. In both cases, nucleation is confined to the polar patterned regions of the surface, and for isopropanol growth is largely limited within the pattern, which shows the importance of surface chemistry for nucleation and growth. The apparent dependence on the enantiomer used in the latter case could imply stereo-differentiation as a result of short-range interactions (the templating monolayer is disordered, even at the nanometre scale). The size of the pattern of chiral monolayer also determines the outcome of the crystallization; 5 μm dots are most effective. Despite the low surface tension of the samples (relative to the high surface tension of water), differential solvation of the polar and hydrophobic layers of the solvents allows crystallization in the polar regions of the monolayer, therefore the polarity of the regions in which heterogeneous nucleation takes place is indeed very important. Despite the complex nature of the crystallization process, these results are an important step towards to the use of patterned surfaces for heterogeneous selective nucleation of enantiomers.
Collapse
Affiliation(s)
- Magalí Lingenfelder
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Catalonia (Spain), Fax: (+34) 93-5805729
| | | | | | | | | |
Collapse
|
9
|
Baranes K, Moshe H, Alon N, Schwartz S, Shefi O. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity. ACS Chem Neurosci 2014; 5:370-6. [PMID: 24559496 DOI: 10.1021/cn500015s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.
Collapse
Affiliation(s)
- Koby Baranes
- Faculty of Engineering, ‡Department of Chemistry, §Gonda Multidisciplinary Brain Research
Center, and ∥Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Hagay Moshe
- Faculty of Engineering, ‡Department of Chemistry, §Gonda Multidisciplinary Brain Research
Center, and ∥Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Noa Alon
- Faculty of Engineering, ‡Department of Chemistry, §Gonda Multidisciplinary Brain Research
Center, and ∥Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Shmulik Schwartz
- Faculty of Engineering, ‡Department of Chemistry, §Gonda Multidisciplinary Brain Research
Center, and ∥Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Orit Shefi
- Faculty of Engineering, ‡Department of Chemistry, §Gonda Multidisciplinary Brain Research
Center, and ∥Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
10
|
Chen J, Myerson AS. Pasteur revisited: chiral separation by crystallization on self-assembled monolayers. CrystEngComm 2012. [DOI: 10.1039/c2ce26415c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Zhou F, Yuan L, Li D, Huang H, Sun T, Chen H. Cell adhesion on chiral surface: the role of protein adsorption. Colloids Surf B Biointerfaces 2011; 90:97-101. [PMID: 22055625 DOI: 10.1016/j.colsurfb.2011.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/28/2022]
Abstract
Chirality is one of the basic, unique, and most appealing features of biological molecules; however, many intriguing chiral phenomena in biological world remains insufficiently revealed yet. In this research, we fabricated chiral surfaces by assembling natural chiral amino acids-cysteine of opposite configurations (D- and L-) onto gold surfaces, respectively, and investigated the adhesion of the L929 fibroblast on them. No significant differences were observed in the density of adherent cells under serum-free culture condition; while in serum-containing condition, significantly more cells adhered on the L-Cys assembled surfaces. This phenomenon suggested that serum protein might play an important role in mediating the selective adhesion of cells on chiral surfaces. Hence, we adopted both radiolabeling and surface plasmon resonance (SPR) techniques to monitor protein adsorption onto the above surfaces. The results evidently showed more proteins adsorbed onto surfaces assembled with L-Cys. We propose that the difference in protein adsorption on chiral surfaces as demonstrated in this paper might not only shed light on the ensuing investigation of bio-related chirality phenomena, but also provide a novel strategy for the rational design and fabrication of novel biomaterials and bio-related devices based on chiral effects.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
12
|
Ejgenberg M, Mastai Y. Conglomerate crystallization on self-assembled monolayers. Chem Commun (Camb) 2011; 47:12161-3. [DOI: 10.1039/c1cc14952k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
|
14
|
|
15
|
Xu H, Wolffs M, Tomović Ž, Meijer EW, Schenning APHJ, De Feyter S. A multivalent hexapod having 24 stereogenic centers: chirality and conformational dynamics in homochiral and heterochiral systems. CrystEngComm 2011. [DOI: 10.1039/c1ce05433c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Singh A, Myerson AS. Chiral Self Assembled Monolayers as Resolving Auxiliaries in the Crystallization of Valine. J Pharm Sci 2010; 99:3931-40. [DOI: 10.1002/jps.22237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
|
18
|
Affiliation(s)
- Cyrille Gautier
- Université de Neuchâtel, Institut de Microtechnique, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
| | - Thomas Bürgi
- Université de Neuchâtel, Institut de Microtechnique, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
| |
Collapse
|