1
|
Mishra AK, Pandey M, Dewangan HK, Sl N, Sahoo PK. A Comprehensive Review on Liver Targeting: Emphasis on Nanotechnology- based Molecular Targets and Receptors Mediated Approaches. Curr Drug Targets 2022; 23:1381-1405. [PMID: 36065923 DOI: 10.2174/1389450123666220906091432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The pathogenesis of hepatic diseases involves several cells, which complicates the delivery of pharmaceutical agents. Many severe liver diseases affecting the worldwide population cannot be effectively treated. Major hindrances or challenges are natural physiological barriers and non-specific targeting of drugs administered, leading to inefficient treatment. Hence, there is an earnest need to look for novel therapeutic strategies to overcome these hindrances. A kind of literature has reported that drug safety and efficacy are incredibly raised when a drug is incorporated inside or attached to a polymeric material of either hydrophilic or lipophilic nature. This has driven the dynamic investigation for developing novel biodegradable materials, drug delivery carriers, target-specific drug delivery systems, and many other novel approaches. OBJECTIVE Present review is devoted to summarizing receptor-based liver cell targeting using different modified novel synthetic drug delivery carriers. It also highlights recent progress in drug targeting to diseased liver mediated by various receptors, including asialoglycoprotein, mannose and galactose receptor, Fc receptor, low-density lipoprotein, glycyrrhetinic, and bile acid receptor. The essential consideration is given to treating liver cancer targeting using nanoparticulate systems, proteins, viral and non-viral vectors, homing peptides and gene delivery. CONCLUSION Receptors based targeting approach is one such approach that was explored by researchers to develop novel formulations which can ensure site-specific drug delivery. Several receptors are on the surfaces of liver cells, which are highly overexpressed in various disease conditions. They all are helpful for the treatment of liver cancer.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Mukesh Pandey
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-05, Chandigarh Ludhiana Highway, Mohali Punjab, Pin: 160101, India
| | - Neha Sl
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector 3, MB Road Pushp Vihar, Delhi 110017, India
| |
Collapse
|
2
|
An alkaline-trigged and procyanidins-stabilized microparticle prepared by extruding the mixture of corn starch, zein and procyanidins. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
4
|
Đekić L, Ćirić A. Modeling of in vitro drug release from polymeric microparticle carriers. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Incorporation of active substances in polymeric microparticles (microencapsulation) is an important technological strategy used in the pharmaceutical industry to improve the functionality, quality, safety and/or therapeutic efficiency of pharmaceutical preparations for different routes of administration. The current focus of research in this field is on the encapsulation of small molecules and macromolecules into microparticles based on biocompatible synthetic polymers and biopolymers, such as polypeptides and polysaccharides, in order to achieve preferable drug release kinetics and many other advantages. Diversity in the structure and size of microparticles, choice of polymers, and manufacturing processes, allows for designing a multitude of microcarriers (e.g., monolithic matrix microspheres, hollow microcapsules, water-or oil-core microcapsules, stimulus-sensitive microcapsules), whereby their impact on biopharmaceutical profile of drugs can be manipulated. The results so far indicate that the in vitro drug release kinetics evaluation is one of the key aspects of the microparticle-type carrier characterization, where the application of the mathematical analysis (modeling) of the drug release profiles is an important tool for elucidating drug release mechanisms, as well as for evaluating the influence and optimization of formulation and process parameters in the microencapsulation procedure. The article reviews representative studies in which mathematical modeling of experimentally obtained release data was performed for microencapsulated model drugs with different physicochemical properties, as well as the relevance and potential limitations of this approach.
Collapse
|
5
|
Hu J, Zhang X, Qu J. Investigation on the mechanical properties of polyurea (PU)/melamine formaldehyde (MF) microcapsules prepared with different chain extenders. J Microencapsul 2018; 35:219-228. [PMID: 29630422 DOI: 10.1080/02652048.2018.1462414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is lack of understanding on controlling of mechanical properties of moisture-curing PU/MF microcapsules which limited its further application. PU/MF microcapsules containing a core of isophorone diisocyanate (IPDI) were prepared with different chain extenders, polyetheramine D400, H2O, triethylenetetramine and polyetheramine (PEA) D230 by following a two-step synthesis method in this study. Fourier transform infra-red (FTIR) spectroscopy, Malvern particle sizing, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). And micromanipulation technique was used to identify chemical bonds in the shell, size distributions, structure, thickness, and mechanical properties of microcapsules. The results show that PU/MF microcapsules were successfully prepared. Tr increased from 46.4 ± 13.9 N/m to 75.8 ± 23.3 N/m when extender changed from D400 to D230. And the Tr increased from 51.3 ± 14.1 to 94.8 ± 17.5 N/m when the swelling time increased from 1 to 3h. Morphologies of the shell were utilised to understand the mechanism of reactions in forming the shell materials.
Collapse
Affiliation(s)
- Jianfeng Hu
- a School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , PR China
| | - Xiaotong Zhang
- b School of Chemical Engineering , University of Birmingham , Edgbaston, Birmingham , UK
| | - Jinqing Qu
- a School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , PR China
| |
Collapse
|
6
|
Hu J, Zhang X, Qu J, Wen Y, Sun W. Synthesis, Characterizations and Mechanical Properties of Microcapsules with Dual Shell of Polyurethane (PU)/Melamine Formaldehyde (MF): Effect of Different Chain Extenders. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jianfeng Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Xiaotong Zhang
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P.R. China
| | - Yuliang Wen
- Guangzhou Goaland Energy Conservation Tech Co., Ltd, Luogang District, Guangzhou 510663, P.R. China
| | - Weifu Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
- Department of Chemistry, University College London, London, WC1E 6BT, U.K
| |
Collapse
|
7
|
Lee J, Lee JH, Yeom B, Char K. Layer-by-Layer Assembly of κ-Casein Amyloid Fibrils for the Preparation of Hollow Microcapsules. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jubong Lee
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Ji-Hye Lee
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| | - Bongjun Yeom
- Department of Chemical Engineering; Myongji University; Yongin 17058 Korea
| | - Kookheon Char
- The National Creative Research Initiative Center for Intelligent Hybrids; The WCU Program of Chemical Convergence for Energy & Environment; School of Chemical & Biological Engineering; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
8
|
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015; 136:514-26. [PMID: 26454541 DOI: 10.1016/j.colsurfb.2015.09.034] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies.
Collapse
Affiliation(s)
- Eugénia Nogueira
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana Preto
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
9
|
Cationic triblock copolymer micelles enhance antioxidant activity, intracellular uptake and cytotoxicity of curcumin. Int J Pharm 2015; 490:298-307. [PMID: 26026253 DOI: 10.1016/j.ijpharm.2015.05.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/21/2022]
Abstract
The aim of the present study was to develop curcumin loaded cationic polymeric micelles and to evaluate their loading, preservation of curcumin antioxidant activity and intracellular uptake ability. The micelles were prepared from a triblock copolymer consisting of poly(ϵ-caprolactone) and very short poly(2-(dimethylamino) ethyl methacrylate) segments (PDMAEMA9-PCL70-PDMAEMA9). The micelles showed monomodal size distribution, mean diameter of 145 nm, positive charge (+72 mV), critical micellar concentration around 0.05 g/l and encapsulation efficiency of 87%. The ability of the micellar curcumin to scavenge the ABTS radical and hypochlorite ions was higher than that of the free curcumin. Confocal microscopy revealed that the uptake of curcumin by chronic myeloid leukemia derived K-562 cells and human multiple myeloma cells U-266 was more intensive when curcumin was loaded into the micelles. These results correlated with the higher cytotoxicity of the micellar curcumin compared to free curcumin. Intraperitoneal treatment of Wistar rats indicated that PDMAEMA-PCL-PDMAEMA copolymer, comprising very short cationic chains, did not change the levels of malondialdehyde and glutathione in livers indicating an absence of oxidative stress. Thus, PDMAEMA-PCL-PDMAEMA triblock micelles could be considered efficient and safe platform for curcumin delivery.
Collapse
|
10
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
11
|
Monge C, Almodóvar J, Boudou T, Picart C. Spatio-Temporal Control of LbL Films for Biomedical Applications: From 2D to 3D. Adv Healthc Mater 2015; 4:811-30. [PMID: 25627563 PMCID: PMC4540079 DOI: 10.1002/adhm.201400715] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/19/2014] [Indexed: 12/15/2022]
Abstract
Introduced in the '90s by Prof. Moehwald, Lvov, and Decher, the layer-by-layer (LbL) assembly of polyelectrolytes has become a popular technique to engineer various types of objects such as films, capsules and free standing membranes, with an unprecedented control at the nanometer and micrometer scales. The LbL technique allows to engineer biofunctional surface coatings, which may be dedicated to biomedical applications in vivo but also to fundamental studies and diagnosis in vitro. Initially mostly developed as 2D coatings and hollow capsules, the range of complex objects created by the LbL technique has greatly expanded in the past 10 years. In this Review, the aim is to highlight the recent progress in the field of LbL films for biomedical applications and to discuss the various ways to spatially and temporally control the biochemical and mechanical properties of multilayers. In particular, three major developments of LbL films are discussed: 1) the new methods and templates to engineer LbL films and control cellular processes from adhesion to differentiation, 2) the major ways to achieve temporal control by chemical, biological and physical triggers and, 3) the combinations of LbL technique, cells and scaffolds for repairing 3D tissues, including cardio-vascular devices, bone implants and neuro-prosthetic devices.
Collapse
Affiliation(s)
- Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016, Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016, Grenoble, France
| | | | | | | |
Collapse
|
12
|
del Mercato LL, Ferraro MM, Baldassarre F, Mancarella S, Greco V, Rinaldi R, Leporatti S. Biological applications of LbL multilayer capsules: from drug delivery to sensing. Adv Colloid Interface Sci 2014; 207:139-54. [PMID: 24625331 DOI: 10.1016/j.cis.2014.02.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 02/15/2014] [Indexed: 11/24/2022]
Abstract
Polyelectrolyte multilayer (PEM) capsules engineered with active elements for targeting, labeling, sensing and delivery hold great promise for the controlled delivery of drugs and the development of new sensing platforms. PEM capsules composed of biodegradable polyelectrolytes are fabricated for intracellular delivery of encapsulated cargo (for example peptides, enzymes, DNA, and drugs) through gradual biodegradation of the shell components. PEM capsules with shells responsive to environmental or physical stimuli are exploited to control drug release. In the presence of appropriate triggers (e.g., pH variation or light irradiation) the pores of the multilayer shell are unlocked, leading to the controlled release of encapsulated cargos. By loading sensing elements in the capsules interior, PEM capsules sensitive to biological analytes, such as ions and metabolites, are assembled and used to detect analyte concentration changes in the surrounding environment. This Review aims to evaluate the current state of PEM capsules for drug delivery and sensing applications.
Collapse
|
13
|
Elżbieciak-Wodka M, Warszyński P. Effect of deposition conditions on thickness and permeability of the multilayer films formed from natural polyelectrolytes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Cheng PC, Chiang PF, Lee KM, Yeh CH, Hsu KL, Liu SW, Shen LH, Peng CL, Fan CK, Luo TY. Evaluating the potential of a new isotope-labelled glyco-ligand for estimating the remnant liver function of schistosoma-infected mice. Parasite Immunol 2013; 35:129-139. [PMID: 23216139 DOI: 10.1111/pim.12022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 11/30/2012] [Indexed: 12/15/2022]
Abstract
A new glyco-derivative compound (OCTAM) was developed and labelled with isotope to form (188) Re-OCTAM as a candidate nuclear medicine imaging agent for testing the liver function. We evaluated the potential of isotope-labelled OCTAM for estimating the remnant liver function in vitro and in vivo schistosoma-infected mice. The affinity of OCTAM to liver asialoglycoprotein receptors (ASGPR) was assessed by competitive inhibition assay in vitro. In vivo assessments were performed to score the remnant liver function in mice at different schistosomal infection stages. OCTAM binds specifically to ASGPR and showed competitive inhibition of anti-ASGPR antibody binding to hepatocytes, and was higher than that of other galactosyl ligands. Micro-SPECT/CT images of uninfected mice revealed strong liver uptake. Quantified serial images of mice infected for 9, 12 and 18 weeks showed delayed liver uptake, and the retention of uptake was inversely correlated with stage and grade of schistosoma infection. Pathological and biochemical analysis demonstrated that gradually accumulating liver injury caused by infection significantly influenced uptake of (188) Re-OCTAM. Hepatic ASGPR expression diminished only in the chronic infection stage. This study demonstrated that the isotope-labelled OCTAM could accumulate in the liver, might have potential as an imaging agent for in vivo hepatic function evaluation of schistosomiasis.
Collapse
Affiliation(s)
- P-C Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - P-F Chiang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - K-M Lee
- Institute of Medical Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - C-H Yeh
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - K-L Hsu
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - S-W Liu
- Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - L-H Shen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - C-L Peng
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - C-K Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - T-Y Luo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| |
Collapse
|
15
|
Pavlukhina S, Sukhishvili S. Smart Layer-by-Layer Assemblies for Drug Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849734318-00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Layer-by-layer (LbL) assembly is an effective tool for development of surface coatings and capsules for localized, controlled delivery of bioactive molecules. Because of the unprecedented versatility of the technique, a broad range of nanoobjects, including molecules, particles, micelles, vesicles and others with diverse chemistry and architecture can be used as building blocks for LbL assemblies, opening various routes for inclusion and delivery of functional molecules to/from LbL films. Moreover, the LbL technique continues to show its power in constructing three-dimensional (3D) delivery containers, in which LbL walls can additionally control delivery of functional molecules incorporated in the capsule interior. In this chapter, we discuss recent progress in the use of LbL assemblies to control release of therapeutic compounds via diffusion, hydrolytic degradation, pH, ionic strength or temperature variations, application of light, ultrasound, electric and magnetic field stimuli, redox activation or biological stimuli.
Collapse
Affiliation(s)
- Svetlana Pavlukhina
- Department of Chemistry Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| | - Svetlana Sukhishvili
- Department of Chemistry Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030 USA
| |
Collapse
|
16
|
Deshmukh PK, Ramani KP, Singh SS, Tekade AR, Chatap VK, Patil GB, Bari SB. Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: Targeting and biosensory applications. J Control Release 2013; 166:294-306. [DOI: 10.1016/j.jconrel.2012.12.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/13/2022]
|
17
|
Jain K, Kesharwani P, Gupta U, Jain NK. A review of glycosylated carriers for drug delivery. Biomaterials 2012; 33:4166-86. [DOI: 10.1016/j.biomaterials.2012.02.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 02/03/2023]
|
18
|
De Temmerman ML, Demeester J, De Smedt SC, Rejman J. Tailoring layer-by-layer capsules for biomedical applications. Nanomedicine (Lond) 2012; 7:771-88. [DOI: 10.2217/nnm.12.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polymeric capsules have attracted great interest as versatile carrier systems in the area of medicine and pharmaceutics. These capsules are made by stepwise layer-by-layer adsorption of polymers onto a template core, which can be removed to produce hollow capsules. The cavity of these capsules can host various cargo molecules while the capsules’ wall can be functionalized towards desired properties by embedding specific moieties into the multilayers. Tuning of the capsules’ properties influences their interaction with cells and tissues and paves the way towards the development of stimuli-responsive capsules releasing their payload at a target site. In this review, we describe the generation of tailored layer-by-layer capsules and focus hereby on numerous potential applications of this multifunctional delivery platform in biomedical settings. We review the current status in the field and discuss the opportunities, as well as the hurdles, to be overcome to successfully transfer this technology to therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joanna Rejman
- Laboratory of General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Magnenet C, Lakard S, Buron CC, Lakard B. Functionalization of organic membranes by polyelectrolyte multilayer assemblies: application to the removal of copper ions from aqueous solutions. J Colloid Interface Sci 2012; 376:202-8. [PMID: 22456274 DOI: 10.1016/j.jcis.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/27/2012] [Accepted: 03/01/2012] [Indexed: 01/26/2023]
Abstract
The functionalization of an organic polyethersulfone membrane (PES) was performed by alternating deposition of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrene sulfonate) (PSS), leading to the formation of a polyelectrolyte multilayer film (PEM). The resulting assembly was characterized by tangential streaming potential measurements to determine the charge of the modified membranes as a function of the polyelectrolyte solution concentration and as a function of the immersion time of the membrane in the polyelectrolyte solutions. Then, the modified membranes were used to perform the ultrafiltration of aqueous solutions containing copper(II) ions. Different operating conditions were tested including: polyelectrolyte concentration, polyelectrolyte nature, thickness of the PEM film or pH of the Cu(2+) solutions. These filtration experiments demonstrated that it was possible to obtain a satisfactory retention of the copper ions (88%), thus proving that this type of assembly can be useful for the removal of copper ions from contaminated aqueous solutions.
Collapse
Affiliation(s)
- C Magnenet
- Université de Franche-Comté, Institut UTINAM-UMR, CNRS 6213, 16 Route de Gray, 25030 Besançon cedex, France
| | | | | | | |
Collapse
|
20
|
Ye C, Shchepelina O, Calabrese R, Drachuk I, Kaplan DL, Tsukruk VV. Robust and responsive silk ionomer microcapsules. Biomacromolecules 2011; 12:4319-25. [PMID: 22050007 PMCID: PMC3404390 DOI: 10.1021/bm201246f] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We demonstrate the assembly of extremely robust and pH-responsive thin shell LbL microcapsules from silk fibroin counterparts modified with poly(lysine) and poly(glutamic) acid, which are based on biocompatible silk ionomer materials in contrast with usually exploited synthetic polyelectrolytes. The microcapsules are extremely stable in an unusually wide pH range from 1.5 to 12.0 and show a remarkable degree of reversible swelling/deswelling response in dimensions, as exposed to extreme acidic and basic conditions. These changes are accompanied by reversible variations in shell permeability that can be utilized for pH-controlled loading and unloading of large macromolecules. Finally, we confirmed that these shells can be utilized to encapsulate yeast cells with a viability rate much higher than that for traditional synthetic polyelectrolytes.
Collapse
Affiliation(s)
- Chunhong Ye
- School of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)
| | - Olga Shchepelina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)
| | - Rossella Calabrese
- Department of Biomedical Engineering, Tufts University, 4, Colby street, Medford, MA 02155 (USA)
| | - Irina Drachuk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4, Colby street, Medford, MA 02155 (USA)
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (USA)
| |
Collapse
|
21
|
Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV. Silk-on-silk layer-by-layer microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:4655-60. [PMID: 21915919 DOI: 10.1002/adma.201102234] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/16/2011] [Indexed: 05/26/2023]
Affiliation(s)
- Olga Shchepelina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
22
|
Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev 2011; 63:1172-85. [PMID: 21914455 DOI: 10.1016/j.addr.2011.08.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022]
Abstract
The present review focuses on the interaction of microgels and microcapsules with biological macromolecules, particularly peptides and proteins, as well as drug delivery applications of such systems. Results from recent studies on factors affecting peptide/protein binding to, and release from, microgels and related systems are discussed, including effects of network properties, as well as protein aggregation, peptide length, hydrophobicity and charge (distributions), secondary structure, and cyclization. Effects of ambient conditions (pH, ionic strength, temperature, etc.) are also discussed, all with focus on factors of importance for the performance of microgel and microcapsule delivery systems for biomacromolecular drugs.
Collapse
|
23
|
Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Adv Drug Deliv Rev 2011; 63:847-64. [PMID: 21620912 DOI: 10.1016/j.addr.2011.05.007] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 04/28/2011] [Accepted: 05/07/2011] [Indexed: 12/17/2022]
Abstract
In this review we will overview novel nanotechnological nanocarrier systems for cancer therapy focusing on recent development in polyelectrolyte capsules for targeted delivery of antineoplastic drugs against cancer cells. Biodegradable polyelectrolyte microcapsules (PMCs) are supramolecular assemblies of particular interest for therapeutic purposes, as they can be enzymatically degraded into viable cells, under physiological conditions. Incorporation of small bioactive molecules into nano-to-microscale delivery systems may increase drug's bioavailability and therapeutic efficacy at single cell level giving desirable targeted therapy. Layer-by-layer (LbL) self-assembled PMCs are efficient microcarriers that maximize drug's exposure enhancing antitumor activity of neoplastic drug in cancer cells. They can be envisaged as novel multifunctional carriers for resistant or relapsed patients or for reducing dose escalation in clinical settings.
Collapse
|
24
|
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 2011; 63:730-47. [PMID: 21463658 DOI: 10.1016/j.addr.2011.03.010] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022]
Abstract
Review of basic principles and recent developments in the area of stimuli responsive polymeric capsules and nanoshells formed via layer-by-layer (LbL) is presented. The most essential attributes of the LbL approach are multifunctionality and responsiveness to a multitude of stimuli. The stimuli can be logically divided into three categories: physical (light, electric, magnetic, ultrasound, mechanical, and temperature), chemical (pH, ionic strength, solvent, and electrochemical) and biological (enzymes and receptors). Using these stimuli, numerous functionalities of nanoshells have been demonstrated: encapsulation, release including that inside living cells or in tissue, sensors, enzymatic reactions, enhancement of mechanical properties, and fusion. This review describes mechanisms and basic principles of stimuli effects, describes progress in the area, and gives an outlook on emerging trends such as theranostics and nanomedicine.
Collapse
Affiliation(s)
- Mihaela Delcea
- Max Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam-Golm, Germany
| | | | | |
Collapse
|
25
|
Sato K, Yoshida K, Takahashi S, Anzai JI. pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev 2011; 63:809-21. [PMID: 21510988 DOI: 10.1016/j.addr.2011.03.015] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/11/2011] [Accepted: 03/30/2011] [Indexed: 12/17/2022]
Abstract
The present review provides an overview on the recent progress in the development of pH- and sugar-sensitive layer-by-layer (LbL) thin films and microcapsules in relation to their potential applications in drug delivery. pH-sensitive LbL films and microcapsules have been studied for the development of peptide and protein drug delivery systems to the gastrointestinal tract, anti-cancer drugs to tumor cells, anti-inflammatory drugs to inflamed tissues, and the intracellular delivery of DNA, where pH is shifted from neutral to acidic. pH-induced decomposition or permeability changes of LbL films and microcapsules form the basis for the pH-sensitive release of drugs. Sugar-sensitive LbL films and microcapsules have been studied mainly for the development of an artificial pancreas that can release insulin in response to the presence of glucose. Therefore, glucose oxidase, lectin, and phenylboronic acid have been used for the construction of glucose-sensitive LbL films and microcapsules. LbL film-coated islet cells are also candidates for an artificial pancreas. An artificial pancreas would make a significant contribution to improving the quality of life of diabetic patients by replacing repeated subcutaneous insulin injections.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
26
|
Dutta P, Dey J, Shome A, Das PK. Nanostructure formation in aqueous solution of amphiphilic copolymers of 2-(N,N-dimethylaminoethyl)methacrylate and alkylacrylate: Characterization, antimicrobial activity, DNA binding, and cytotoxicity studies. Int J Pharm 2011; 414:298-311. [PMID: 21600968 DOI: 10.1016/j.ijpharm.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 01/02/2023]
Abstract
Three amphiphilic random copolymers poly(2-(dimethylaminoethyl)methacrylate-co-alkylacrylate) (where, alkyl = hexyl, octyl, dodecyl) with 16 mol% hydrophobic substitution were synthesized. Surface tension, viscosity, fluorescence probe, dynamic light scattering (DLS), as well as transmission electron microscopic (TEM) techniques were utilized to investigate self-assembly formation by the hydrophobically modified polymers (HMPs) in pH 5. Formation of hydrophobic domains through inter-polymer chain interaction of the copolymer in dilute solution was confirmed by fluorescence probe studies. Average hydrodynamic diameter of the copolymer aggregates at different polymer concentration was measured by DLS studies. The copolymer with shorter hydrophobic chain exhibits larger hydrodynamic diameter in dilute solution, which decreased with either increase of concentration or increase of hydrophobic chain length. TEM images of the dilute solutions of the copolymers with shorter as well as with longer hydrophobic chain exhibit spherical aggregates of different sizes. The antimicrobial activity of the copolymers was evaluated by measuring the minimum inhibitory concentration value against one Gram-positive bacterium Bacillus subtilis and one Gram-negative bacterium Escherichia coli. The copolymer with the octyl group as pendent hydrophobic chain was found to be more effective in killing these microorganisms. The interaction of the cationic copolymers with calf-thymus DNA was studied by fluorescence quenching method. The polymer-DNA binding was found to be purely electrostatic in nature. The hydrophobes on the polymer backbone were found to have a significant influence on the binding process. Biocompatibility studies of the copolymers in terms of cytotoxicity measurements were finally performed at different concentrations of the HMPs to evaluate their potential application in biomedical fields.
Collapse
Affiliation(s)
- Pranabesh Dutta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
27
|
Wei J, Ju XJ, Xie R, Mou CL, Lin X, Chu LY. Novel cationic pH-responsive poly(N,N-dimethylaminoethyl methacrylate) microcapsules prepared by a microfluidic technique. J Colloid Interface Sci 2011; 357:101-8. [DOI: 10.1016/j.jcis.2011.01.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/11/2023]
|
28
|
Liu C, Zhang N. Nanoparticles in Gene Therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:509-62. [DOI: 10.1016/b978-0-12-416020-0.00013-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Okuda T, Kidoaki S. Development of Time-Programmed, Dual-Release System Using Multilayered Fiber Mesh Sheet by Sequential Electrospinning. JOURNAL OF ROBOTICS AND MECHATRONICS 2010. [DOI: 10.20965/jrm.2010.p0579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In general clinical pharmacotherapy, multidrug therapy is performed with a view to enhancing drug efficacy or reducing drug’s side effects. It is essential that a Drug Delivery System (DDS) for plural drugs be developed to make multidrug therapy more functional and effective. In this review, we summarize prior DDS research and recent developmental efforts for multi-DDS, as well as of the electrospinning (ELSP) method, which has recently attracted great attention as preparation technique of fine polymer fiber in various fields. We also describe a time-programmed dual-drug controlled-release system using multilayered fiber mesh sheets that have been fabricated by a sequential ELSP method we developed. In addition, we address developmental approaches for DDS devices using micromachining technologies (MEMS) as well as issues and future expectations for robotics in DDS research.
Collapse
|
30
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Wirkstoffverabreichung mithilfe polymerer Mehrschichtkapseln. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN. Polymeric Multilayer Capsules in Drug Delivery. Angew Chem Int Ed Engl 2010; 49:6954-73. [DOI: 10.1002/anie.200906266] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Charge properties of membranes modified by multilayer polyelectrolyte adsorption. J Colloid Interface Sci 2010; 344:221-7. [DOI: 10.1016/j.jcis.2009.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 12/18/2022]
|
33
|
Zhang F, Liu LJ, Wu Q, Lin XF. Design and in vitro
Biodegradation of Novel Hepatocyte-Targetable (Galactose Polycation/Hemoglobin) Multilayers and Microcapsules. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Biodegradable and thermoresponsive micelles of triblock copolymers based on 2-(N,N-dimethylamino)ethyl methacrylate and ε-caprolactone for controlled drug delivery. Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2008.07.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|