1
|
Ishihara K, Mitera K, Inoue Y, Fukazawa K. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf B Biointerfaces 2020; 194:111205. [DOI: 10.1016/j.colsurfb.2020.111205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
|
2
|
Pramono S, Pugdee K, Suwanprateep J, Koontongkaew S. Sandblasting and fibronectin-derived peptide immobilization on titanium surface increase adhesion and differentiation of osteoblast-like cells (MC3T3-E1). J Dent Sci 2016; 11:427-436. [PMID: 30895008 PMCID: PMC6395237 DOI: 10.1016/j.jds.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/19/2016] [Indexed: 11/23/2022] Open
Abstract
Background/purpose Various chemical titanium (Ti) surface modifications have been reported for enhancing cellular activities that promote early osseointegration. The purpose of this study was to determine if sandblasted Ti coated with or without fibronectin (FN) or FN-derived peptides stimulated osteoblast-like cell adhesion, spreading, proliferation, and differentiation. Materials and methods Osteoblast-like cells (MC3T3-E1) were cultured on sandblasted Ti disks immobilized with FN or FN-derived peptides [GRGDSP (Gly-Arg-Gly-Asp-Ser), PHSRN (Pro-His-Ser-Arg-Asn), or GRGDSP/PHSRN]. Surface topography, cell morphology, cell adhesion, cell proliferation, analysis of osteogenesis-related genes and protein expression, alkaline phosphatase, and alizarin red staining of mineralization were evaluated. Results The sandblasted Ti coated with FN or FN-derived peptides enhanced cell adhesion and cell proliferation. However, the Ti coated with FN or FN-derived peptides groups were similar in cell spreading. Osteogenic differentiation was observed in the peptide-modified Ti surface groups, compared with that of the noncoated Ti group. FN and GRGDSP/PHSRN coating enhanced the gene and protein expression of Runx2, osteocalcin, and bone sialoprotein. Alkaline phosphatase activity and matrix mineralization were also markedly enhanced in the Ti coated groups. Conclusion The sandblasted Ti coated with FN or FN-derived peptides (GRGDSP/PHSRN) markedly enhance adhesion, proliferation, and differentiation of osteoblast-like cells compared with uncoated sandblasted Ti.
Collapse
Affiliation(s)
- Samdharu Pramono
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand.,Department of Prosthodontics, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Kamolparn Pugdee
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Jintamai Suwanprateep
- Biomedical Engineering Research Unit, National Metal and Materials Technology Center, Ministry of Science and Technology, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| | - Sittichai Koontongkaew
- Faculty of Dentistry, Thammasat University, Patholyothin Road, Klongluang, Prathumtani 12121, Thailand
| |
Collapse
|
3
|
Di Pietro P, Zaccaro L, Comegna D, Del Gatto A, Saviano M, Snyders R, Cossement D, Satriano C, Rizzarelli E. Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: a versatile integrin targeting platform for cells and bacteria. RSC Adv 2016. [DOI: 10.1039/c6ra21568h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A green fluorescent RGD peptide–silver nanoparticle platform to target integrin receptors in cells and bacterial studies.
Collapse
Affiliation(s)
- P. Di Pietro
- Department of Chemical Sciences
- University of Catania
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.)
- 95125 Catania
- Italy
| | - L. Zaccaro
- Institute of Biostructure and Bioimaging (IBB) of the Italian National Research Council (CNR)
- Napoli
- Italy
| | - D. Comegna
- Institute of Biostructure and Bioimaging (IBB) of the Italian National Research Council (CNR)
- Napoli
- Italy
| | - A. Del Gatto
- Institute of Biostructure and Bioimaging (IBB) of the Italian National Research Council (CNR)
- Napoli
- Italy
| | - M. Saviano
- Institute of Crystallography (IC) of the Italian National Research Council (CNR)
- Bari
- Italy
| | - R. Snyders
- Chimie des Interactions Plasma Surface (ChIPS)
- Research Institute for Materials Science and Engineering
- Université de Mons (UMONS)
- Belgium
- Materia Nova Research Center
| | | | - C. Satriano
- Department of Chemical Sciences
- University of Catania
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.)
- 95125 Catania
- Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences
- University of Catania
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.)
- 95125 Catania
- Italy
| |
Collapse
|
4
|
Pizzanelli S, Forte C, Pinzino C, Magrì A, La Mendola D. Copper(ii) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics. Phys Chem Chem Phys 2016; 18:3982-94. [DOI: 10.1039/c5cp05798a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods.
Collapse
Affiliation(s)
- Silvia Pizzanelli
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Claudia Forte
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Calogero Pinzino
- Istituto di Chimica dei Composti OrganoMetallici
- Consiglio Nazionale delle Ricerche-CNR
- 1, 56124 Pisa
- Italy
| | - Antonio Magrì
- Istituto di Biostrutture e Bioimmagini
- Consiglio Nazionale delle Ricerche-CNR
- 95126 Catania
- Italy
| | | |
Collapse
|
5
|
Sandrin L, Thakar D, Goyer C, Labbé P, Boturyn D, Coche-Guérente L. Controlled surface density of RGD ligands for cell adhesion: evidence for ligand specificity by using QCM-D. J Mater Chem B 2015; 3:5577-5587. [DOI: 10.1039/c5tb00420a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical interligand spacing is required to observe selective cell adhesion.
Collapse
Affiliation(s)
- L. Sandrin
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | - D. Thakar
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | - C. Goyer
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | - P. Labbé
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | - D. Boturyn
- Univ. Grenoble Alpes
- DCM UMR 5250
- F-38000 Grenoble
- France
- CNRS
| | | |
Collapse
|
6
|
Chutipakdeevong J, Ruktanonchai U, Supaphol P. Hybrid biomimetic electrospun fibrous mats derived from poly(ε-caprolactone) and silk fibroin protein for wound dressing application. J Appl Polym Sci 2014. [DOI: 10.1002/app.41653] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jesada Chutipakdeevong
- The Petroleum and Petrochemical College; Chulalongkorn University; Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency, 111 Thailand Science Park; Paholyothin Road Pathumthani 12120 Thailand
| | - Pitt Supaphol
- The Petroleum and Petrochemical College; Chulalongkorn University; Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
7
|
Impact of selective fibronectin nanoconfinement on human dental pulp stem cells. Colloids Surf B Biointerfaces 2014; 123:39-48. [PMID: 25200204 DOI: 10.1016/j.colsurfb.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/15/2014] [Accepted: 08/10/2014] [Indexed: 01/30/2023]
Abstract
In this study, it was aimed to investigate the combinatory effect of biophysical and biochemical factors on human dental pulp stem cells' (hDPSCs) behavior. For this purpose, well-defined nanotopography of nanowells with two different pitch size of 109 nm and 341 nm were prepared on polyhydroxymethylsiloxane (PHMS) by using colloidal particles nanofabrication. The nanopatterned PHMS surfaces (PHMS/109 and PHMS/341) were subsequently used for fibronectin (Fn) adsorption. With this approach, nanotopographical details were combined with biochemical signals from Fn. Depending upon the size of cavities created by the nanowells, Fn molecules followed a site-selective adsorption. While they adsorbed both inside and outside the nanowells of PHMS/341, they preferred to adsorb outside the cavities of PHMS/109 surfaces. Human dental pulp stem cells were cultured on nanopatterned PHMS with or without Fn adsorption in the presence and absence of serum. Scanning electron microscopy and fluorescence microscopy analyses showed the interaction of cells was dependent on nanotopography size especially in serum-free medium. Furthermore, hDPSCs' morphology and cytoskeletal organization changed in correlation with preferential Fn adsorption. On Fn adsorbed PHMS/109 surfaces, cells displayed stretched bundles whereas, they showed extensive spreading and followed the Fn adsorbed sites inside the cavities of PHMS/341 surfaces. The observed effects are interpreted in terms of the preferential exposure of different Fn epitopes occurring on PHMS/109 and PHMS/341 as a consequence of the different hydrophilic/hydrophobic adsorbing surface.
Collapse
|
8
|
Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev 2013; 65:471-96. [PMID: 22465488 DOI: 10.1016/j.addr.2012.03.009] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
Abstract
The development of smart biomaterials for tissue regeneration has become the focus of intense research interest. More opportunities are available by the composite approach of combining the biomaterials in the form of biopolymers and/or bioceramics either synthetic or natural. Strategies to provide smart capabilities to the composite biomaterials primarily seek to achieve matrices that are instructive/inductive to cells, or that stimulate/trigger target cell responses that are crucial in the tissue regeneration processes. Here, we review in-depth, recent developments concerning smart composite biomaterials available for delivery systems of biofactors and cells and scaffolding matrices in tissue engineering. Smart composite designs are possible by modulating the bulk and surface properties that mimic the native tissues, either in chemical (extracellular matrix molecules) or in physical properties (e.g. stiffness), or by introducing external therapeutic molecules (drugs, proteins and genes) within the structure in a way that allows sustainable and controllable delivery, even time-dependent and sequential delivery of multiple biofactors. Responsiveness to internal or external stimuli, including pH, temperature, ionic strength, and magnetism, is another promising means to improve the multifunctionality in smart scaffolds with on-demand delivery potential. These approaches will provide the next-generation platforms for designing three-dimensional matrices and delivery systems for tissue regenerative applications.
Collapse
|
9
|
Tymchenko N, Nilebäck E, Voinova MV, Gold J, Kasemo B, Svedhem S. Reversible Changes in Cell Morphology due to Cytoskeletal Rearrangements Measured in Real-Time by QCM-D. Biointerphases 2012; 7:43. [DOI: 10.1007/s13758-012-0043-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022] Open
|
10
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
11
|
Magrì A, D'Alessandro F, Distefano DA, Campagna T, Pappalardo G, Impellizzeri G, La Mendola D. Copper(II) coordination properties of the integrin ligand sequence PHSRN and its new β-cyclodextrin conjugates. J Inorg Biochem 2012; 113:15-24. [DOI: 10.1016/j.jinorgbio.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
|
12
|
Min X, Tang M, Jiao Y, Zhou C. The Correlation between Fibronectin Adsorption and Fibroblast Cell Behaviors on Chitosan/Poly(
ϵ
-Caprolactone) Blend Films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1421-35. [DOI: 10.1163/092050611x582858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiang Min
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Minjian Tang
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Yanpeng Jiao
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| | - Changren Zhou
- a Department of Materials Science and Engineering , Jinan University , Guangzhou , 510632 , P. R. China
- b Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University , Guangzhou , 510632 , P. R. China
| |
Collapse
|
13
|
Saitakis M, Gizeli E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 2012; 69:357-71. [PMID: 21997385 PMCID: PMC11114954 DOI: 10.1007/s00018-011-0854-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Acoustic biosensors offer the possibility to analyse cell attachment and spreading. This is due to the offered speed of detection, the real-time non-invasive approach and their high sensitivity not only to mass coupling, but also to viscoelastic changes occurring close to the sensor surface. Quartz crystal microbalance (QCM) and surface acoustic wave (Love-wave) systems have been used to monitor the adhesion of animal cells to various surfaces and record the behaviour of cell layers under various conditions. The sensors detect cells mostly via their sensitivity in viscoelasticity and mechanical properties. Particularly, the QCM sensor detects cytoskeletal rearrangements caused by specific drugs affecting either actin microfilaments or microtubules. The Love-wave sensor directly measures cell/substrate bonds via acoustic damping and provides 2D kinetic and affinity parameters. Other studies have applied the QCM sensor as a diagnostic tool for leukaemia and, potentially, for chemotherapeutic agents. Acoustic sensors have also been used in the evaluation of the cytocompatibility of artificial surfaces and, in general, they have the potential to become powerful tools for even more diverse cellular analysis.
Collapse
Affiliation(s)
- Michael Saitakis
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion-Crete, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, 100 N. Plastira Vassilika Vouton, 70013 Heraklion-Crete, Greece
| |
Collapse
|