1
|
Pawlowska A, Sadowski Z. Effect of Schwertmannite Surface Modification by Surfactants on Adhesion of Acidophilic Bacteria. Microorganisms 2020; 8:E1725. [PMID: 33158100 PMCID: PMC7694224 DOI: 10.3390/microorganisms8111725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial cell adhesion onto mineral surfaces is important in a broad spectrum of processes, including bioweathering, bioleaching, and bacterial cell transport in the soil. Despite many research efforts, a detailed explanation is still lacking. This work investigates the role of surface-active compounds, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and pure rhamnolipid (RH), in the process of bacteria attachment on the schwertmannite surface. The surface energy was calculated based on the wettability of the tested systems, and for bacteria it was 54.8 mJ/m2, schwertmannite-SDS 54.4 mJ/m2, schwertmannite-CTAB 55.4 mJ/m2, and schwertmannite-RH 39.7 mJ/m2. The total energy of adhesion estimated based on thermodynamic data was found to be negative, suggesting favorable conditions for adhesion for all examined suspensions. However, including electrostatic interactions allowed for a more precise description of bacterial adhesion under the tested conditions. The theoretical analysis using the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) approach showed a negative value of total adsorption energy only in bacteria-mineral suspensions, where SDS and rhamnolipid were added. The calculated data were in good agreement with experimental results indicating the significance of electrostatic forces in adsorption.
Collapse
Affiliation(s)
- Agnieszka Pawlowska
- Department of Chemical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Abstract
To improve the properties and dispersibility of CaCO3-TiO2 composite pigments (CaCO3-TiO2) in organic matrices, the surface modification of CaCO3-TiO2 was performed with sodium stearate (SS) as an organic modifier by wet ultra-fine grinding in a stirred mill. The pigment properties of modified CaCO3-TiO2 and its dispersibility in organic media were tested and characterized. The binding mechanism between CaCO3-TiO2 and SS was explored by infrared spectrometry (IR) and X-ray photoelectron energy spectroscopy (XPS). The results showed that the mechanical grinding strength and SS dosage had a significant effect on the activation index and sedimentation rate of CaCO3-TiO2. After surface modification, the surface of CaCO3-TiO2 turned from a hydrophilic surface to a hydrophobic surface and the surface free energy was reduced. In addition, the hiding property and dispersibility of CaCO3-TiO2 in the organic medium were significantly improved. IR and XPS results indicated that the modifier SS was adsorbed on the surface of CaCO3-TiO2 by chemical combination.
Collapse
|
3
|
Comparative Analysis of Attachment to Chalcopyrite of Three Mesophilic Iron and/or Sulfur-Oxidizing Acidophiles. MINERALS 2018. [DOI: 10.3390/min8090406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively analyzed for Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans during bioleaching of chalcopyrite. The adhesion forces between bacteria and minerals were measured by atomic force microscopy (AFM). L. ferrooxidans had the largest adhesion force and attached best to chalcopyrite, while A. ferrooxidans exhibited the highest bioleaching of chalcopyrite. The results suggest that the biofilm formation, rather than the initial adhesion, is positively correlated with bioleaching efficiency.
Collapse
|
4
|
Zou W, Zhao J, Sun C. Adsorption of Anionic Polyacrylamide onto Coal and Kaolinite Calculated from the Extended DLVO Theory Using the van Oss-Chaudhury-Good Theory. Polymers (Basel) 2018; 10:polym10020113. [PMID: 30966149 PMCID: PMC6414906 DOI: 10.3390/polym10020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
The dispersion behavior of particles is of great significance in selective flocculation flotation. The interfacial interaction between coal and the main impurity mineral (kaolinite) particles with the effect of an anionic polyacrylamide (PAM A401) was explored by the extended Derjagin–Landau–Verwey–Overbeek (DLVO) theory. The involved surface free energy components of fine mineral particles were estimated using the van Oss-Chaudhury-Good theory and Washburn equation. After adsorption of PAM A401, the range and absolute value of the hydrophobic interaction VHA of the coal particles decreased, the electrostatic repulsive potential increased, and the total potential energy changed from −1.66 × 105 to −4.03 × 104 kT at the separation distance of 5 nm. For interactions between the kaolinite and coal particles after PAM A401 adsorption, the electrostatic repulsive potential increased and the hydrophilic repulsive potential energy decreased. The energy barrier at the separation distance of 0.2 nm decreased from 2.78 × 104 to 2.29 × 104 kT. The total potential energy between the kaolinite and coal particles after PAM A401 adsorption was still repulsive, and the range of the repulsive interaction increased from ~0.05 to 47 nm to ~0.05 to 50 nm. The total potential energy of the coal particles after PAM A401 adsorption was still attractive. This behavior of coal and kaolinite particles with the effect of PAM A401 indicates the possibility of enhanced fine coal separation by the method of selective flocculation flotation.
Collapse
Affiliation(s)
- Wenjie Zou
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China.
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, Xuzhou 221116, China.
| | - Jinglin Zhao
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chunbao Sun
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Ma W, Peng D, Walker SL, Cao B, Gao CH, Huang Q, Cai P. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides. NPJ Biofilms Microbiomes 2017. [PMID: 28649405 PMCID: PMC5445608 DOI: 10.1038/s41522-017-0013-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis. The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR, key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.
Collapse
Affiliation(s)
- Wenting Ma
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 China
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521 USA
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
6
|
Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans. MINERALS 2016. [DOI: 10.3390/min6040100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Diao M, Taran E, Mahler S, Nguyen AV. A concise review of nanoscopic aspects of bioleaching bacteria-mineral interactions. Adv Colloid Interface Sci 2014; 212:45-63. [PMID: 25245273 DOI: 10.1016/j.cis.2014.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/17/2023]
Abstract
Bioleaching is a technology for the recovery of metals from minerals by means of microorganisms, which accelerate the oxidative dissolution of the mineral by regenerating ferric ions. Bioleaching processes take place at the interface of bacteria, sulfide mineral and leaching solution. The fundamental forces between a bioleaching bacterium and mineral surface are central to understanding the intricacies of interfacial phenomena, such as bacterial adhesion or detachment from minerals and the mineral dissolution. This review focuses on the current state of knowledge in the colloidal aspect of bacteria-mineral interactions, particularly for bioleaching bacteria. Special consideration is given to the microscopic structure of bacterial cells and the atomic force microscopy technique used in the quantification of fundamental interaction forces at nanoscale.
Collapse
Affiliation(s)
- Mengxue Diao
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Elena Taran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen Mahler
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
8
|
Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.03.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Zhao W, Walker SL, Huang Q, Cai P. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. WATER RESEARCH 2014; 53:35-46. [PMID: 24495985 DOI: 10.1016/j.watres.2014.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 01/05/2014] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion to granular soil particles is well studied; however, pathogen interactions with naturally occurring colloidal particles (<2 μm) in soil has not been investigated. This study was developed to identify the interaction mechanisms between model bacterial pathogens and soil colloids as a function of cell type, natural organic matter (NOM), and solution chemistry. Specifically, batch adhesion experiments were conducted using NOM-present, NOM-stripped soil colloids, Streptococcus suis SC05 and Escherichia coli WH09 over a wide range of solution pH (4.0-9.0) and ionic strength (IS, 1-100 mM KCl). Cell characterization techniques, Freundlich isotherm, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (sphere-sphere model) were utilized to quantitatively determine the interactions between cells and colloids. The adhesion coefficients (Kf) of S. suis SC05 to NOM-present and NOM-stripped soil colloids were significantly higher than E. coli WH09, respectively. Similarly, Kf values of S. suis SC05 and E. coli WH09 adhesion to NOM-stripped soil colloids were greater than those colloids with NOM-present, respectively, suggesting NOM inhibits bacterial adhesion. Cell adhesion to soil colloids declined with increasing pH and enhanced with rising IS (1-50 mM). Interaction energy calculations indicate these adhesion trends can be explained by DLVO-type forces, with S. suis SC05 and E. coli WH09 being weakly adhered in shallow secondary energy minima via polymer bridging and charge heterogeneity. S. suis SC05 adhesion decreased at higher IS 100 mM, which is attributed to the change of hydrophobic effect and steric repulsion resulted from the greater presence of extracellular polymeric substances (EPS) on S. suis SC05 surface as compared to E. coli WH09. Hence, pathogen adhesion to the colloidal material is determined by a combination of DLVO, charge heterogeneity, hydrophobic and polymer interactions as a function of solution chemistry.
Collapse
Affiliation(s)
- Wenqiang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Perni S, Preedy EC, Prokopovich P. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Colloid Interface Sci 2014; 206:265-74. [PMID: 24342736 DOI: 10.1016/j.cis.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
Abstract
Biofilms are communities of cells attached to surfaces, their contributions to biological process may be either a benefit or a threat depending on the microorganism involved and on the type of substrate and environment. Biofilm formation is a complex series of steps; due to the size of microorganisms, the initial phase of biofilm formation, the bacterial adhesion to the surface, has been studied and modeled using theories developed in colloidal science. In this review the application of approaches such as Derjaguin, Landau, Verwey, Overbeek (DLVO) theory and its extended version (xDLVO), to bacterial adhesion is described along with the suitability and applicability of such approaches to the investigation of the interface phenomena regulating cells adhesion. A further refinement of the xDLVO theory encompassing the brush model is also discussed. Finally, the evidences of phenomena neglected in colloidal approaches, such as surface heterogeneity and fluid flow, likely to be the source of failure are defined.
Collapse
|
11
|
Diao M, Taran E, Mahler S, Nguyen TA, Nguyen AV. Quantifying adhesion of acidophilic bioleaching bacteria to silica and pyrite by atomic force microscopy with a bacterial probe. Colloids Surf B Biointerfaces 2014; 115:229-36. [DOI: 10.1016/j.colsurfb.2013.11.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
|
12
|
Wang H, Chen XL, Bai Y, Guo C, Zhang L. Application of dissolved air flotation on separation of waste plastics ABS and PS. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:1297-1305. [PMID: 22503154 DOI: 10.1016/j.wasman.2012.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
The aim of this research was to separate waste plastics acrylonitrile butadiene styrene (ABS) and polystyrene (PS) by dissolved air flotation in a self-designed dissolved air flotation apparatus. The effects of wetting agents, frother, conditioning time and flotation time on flotation behavior of waste plastics ABS (w-ABS) and PS (w-PS) were investigated and the optimized separation conditions were obtained. The results showed that when using 25 mgL(-1) tannic acid, 5 mgL(-1) terpineol, 15 min conditioning time and 15 min flotation time, mixtures of w-ABS and w-PS were separated successfully by dissolved air flotation in two stages, the results revealed that the purity and recovery rate of w-PS in the floated products were 90.12% and 97.45%, respectively, and the purity and recovery rate of w-ABS in the depressed products were 97.24% and 89.38%, respectively. Based on the studies of wetting mechanism of plastic flotation, it is found that the electrostatic force and hydrophobic attraction cannot be the main factor of the interaction between wetting agent molecules and plastic particles, which can be completed through water molecules as a mesophase, and a hydrogen bonding adsorption model with hydration shell as a mesophase was proposed.
Collapse
Affiliation(s)
- Hui Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Resource Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, 410083 Hunan, China.
| | | | | | | | | |
Collapse
|
13
|
Zhu J, Li Q, Jiao W, Jiang H, Sand W, Xia J, Liu X, Qin W, Qiu G, Hu Y, Chai L. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite. Colloids Surf B Biointerfaces 2012; 94:95-100. [DOI: 10.1016/j.colsurfb.2012.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 11/29/2022]
|
14
|
Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl Environ Microbiol 2011; 77:5071-8. [PMID: 21685165 DOI: 10.1128/aem.00726-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 10 years ago, a new family of cell wall-deficient, iron-oxidizing archaea, Ferroplasmaceae, within the large archaeal phylum Euryarchaeota, was described. In this minireview, I summarize the research progress achieved since then and report on the current status of taxonomy, biogeography, physiological diversity, biochemistry, and other research areas involving this exciting group of acidophilic archaea.
Collapse
|
15
|
Bahn CB, Kasza KE, Shack WJ, Natesan K, Klein P. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water. NUCLEAR ENGINEERING AND DESIGN 2011. [DOI: 10.1016/j.nucengdes.2010.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|