1
|
Guan T, Yuket S, Cong H, Carton DW, Zhang N. Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips. ACS OMEGA 2022; 7:20104-20117. [PMID: 35721891 PMCID: PMC9202056 DOI: 10.1021/acsomega.2c01948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/19/2022] [Indexed: 05/14/2023]
Abstract
A hydrophobic surface modification followed by solvent vapor-assisted thermal bonding was developed for the fabrication of cyclic olefin copolymer (COC) microfluidic chips. The modifier species 1H,1H,2H,2H-perfluorooctyl trichlorosilane (FOTS) was used to achieve the entrapment functionalization on the COC surface, and a hydrophobic surface was developed through the formation of a Si-O-Si crosslink network. The COC surface coated with 40 vol % cyclohexane, 59 vol % acetone, and 1 vol % FOTS by ultrasonic spray 10 and 20 times maintained its hydrophobicity with the water contact angle increasing from ∼86 to ∼115° after storage for 3 weeks. The solvent vapor-assisted thermal bonding was optimized to achieve high bond strength and good channel integrity. The results revealed that the COC chips exposed to 60 vol % cyclohexane and 40 vol % acetone for 120 s have the highest bond strength, with a burst pressure of ∼17 bar, which is sufficient for microfluidics applications such as droplet generation. After bonding, the channel maintained its integrity without any channel collapse. The hydrophobicity was also maintained, proved by the water contact angle of ∼115° on the bonded film, as well as the curved shape of water flow in the chip channel by capillary test. The combined hydrophobic treatment and solvent bonding process show significant benefits for scale-up production compared to conventional hydrophilic treatment for bonding and hydrophobic treatment using surface grafting or chemical vapor deposition since it does not require nasty chemistry, long-term treatment, vacuum chamber, and can be integrated into production line easily. Such a process can also be extended to permanent hydrophilic treatment combined with the bonding process and will lay a foundation for low-cost mass production of plastic microfluidic cartridges.
Collapse
Affiliation(s)
- Tianyu Guan
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
& Materials Engineering, University
College Dublin, Dublin 4 Dublin, Ireland
| | - Sineenat Yuket
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
& Materials Engineering, University
College Dublin, Dublin 4 Dublin, Ireland
| | - Hengji Cong
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
& Materials Engineering, University
College Dublin, Dublin 4 Dublin, Ireland
| | - Douglas William Carton
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
& Materials Engineering, University
College Dublin, Dublin 4 Dublin, Ireland
- MiNAN
Technologies, NovaUCD, Belfield, Dublin 4 Dublin, Ireland
| | - Nan Zhang
- Centre
of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical
& Materials Engineering, University
College Dublin, Dublin 4 Dublin, Ireland
- MiNAN
Technologies, NovaUCD, Belfield, Dublin 4 Dublin, Ireland
| |
Collapse
|
2
|
Fang C, Zhang P, Rajabzadeh S, Kato N, Matsuyama H. One step surfactant entrapment onto PVDF hollow fiber membrane surface by the TIPS process using a triple-layer orifice spinneret. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Fang C, Zhang X, Gong X, Feng W, Zhu L, Matsuyama H. Enhancing membrane surface antifouling by implanting amphiphilic polymer brushes using a swelling induced entrapment technique. Colloids Surf B Biointerfaces 2020; 195:111212. [PMID: 32645593 DOI: 10.1016/j.colsurfb.2020.111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022]
Abstract
In this work, a swelling induced entrapment technique was developed to enhance the hydrophilicity and antifouling performances of polypropylene (PP) microfiltration membranes. By this method, three amphiphilic polymers with different chemical structures (i.e., a homopolymer (polypropylene glycol), a di-block copolymer (oligoethylene glycol monooctadecylether), and a tri-block copolymer of ethylene glycol (EO) and propylene glycol) were successfully implanted onto membrane surfaces to be polymer brushes with high density, without having a significant effect on the membrane pore structure. The polymer brushes significantly enhanced the hydrophilicity and protein fouling resistance of the membrane. In particular, when using the di-block copolymer with a short hydrophilic EO chain, the modified membrane showed a low water contact angle, down to 20°, and low adsorption of bovine serum albumin of 1.1 μg cm-2. Furthermore, the implanted polymer brushes exhibited excellent durability. The hydrophobic segments of amphiphilic polymers played a leading role in the implantation and stability of the brushes on the PP membrane surface. This work provides a feasible strategy to achieve surface hydrophilicity and antifouling performances in a hydrophobic membrane for use in high-efficiency water treatment.
Collapse
Affiliation(s)
- Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China; Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Xinyu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiaona Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Weilin Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
4
|
He C, Li M, Zhang J, Yan B, Zhao W, Sun S, Zhao C. Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. Macromol Biosci 2020; 20:e2000153. [PMID: 32583960 DOI: 10.1002/mabi.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Indexed: 11/10/2022]
Abstract
Excessive bilirubin in the body of patient with liver dysfunction or metabolic obstruction may cause jaundice with irreversible brain damage, and new type of adsorbent for bilirubin is under frequent investigation. Herein, graphene oxide based core @ polyethersulfone-based shell beads are fabricated by phase inversion method, amides and heparin-like polymer are introduced to functionalize the core-shell beads. The beads are successfully prepared with obvious core-shell structure, adequate thermostability and porous shell. Clotting times and protein adsorption are investigated to inspect the hemocompatibility property of the beads. The adsorption of bilirubin is systematically investigated by evaluating the effects of contacting time, initial concentration and temperature on the adsorption, which exhibits improved bilirubin adsorption amount for the beads with amides contained cores or/and shells. It is worth believing that the amides and heparin-like polymer co-functionalized core-shell beads may be utilized in the field of hemoperfusion for bilirubin adsorption.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingyuan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Bingqing Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shudong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Preparation and Evaluation of iPP/GO Microfiltration Membrane with Enhanced Antifouling Property. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-8038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Baki A, Rahman CV, White LJ, Scurr DJ, Qutachi O, Shakesheff KM. Surface modification of PdlLGA microspheres with gelatine methacrylate: Evaluation of adsorption, entrapment, and oxygen plasma treatment approaches. Acta Biomater 2017; 53:450-459. [PMID: 28093368 PMCID: PMC5424780 DOI: 10.1016/j.actbio.2017.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
Injectable poly (dl-lactic-co-glycolic acid) (PdlLGA) microspheres are promising candidates as biodegradable controlled release carriers for drug and cell delivery applications; however, they have limited functional groups on the surface to enable dense grafting of tissue specific biocompatible molecules. In this study we have evaluated surface adsorption, entrapment and oxygen plasma treatment as three approaches to modify the surfaces of PdlLGA microspheres with gelatine methacrylate (gel-MA) as a biocompatible and photo cross-linkable macromolecule. Time of flight secondary ion mass spectroscopy (TOF SIMS) and X-ray photoelectron spectroscopy (XPS) were used to detect and quantify gel-MA on the surfaces. Fluorescent and scanning electron microscopies (SEM) were used to image the topographical changes. Human mesenchymal stem cells (hMSCs) of immortalised cell line were cultured on the surface of gel-MA modified PdlLGA microspheres and Presto-Blue assay was used to study the effect of different surface modifications on cell proliferation. Data analysis showed that the oxygen plasma treatment approach resulted in the highest density of gel-MA deposition. This study supports oxygen plasma treatment as a facile approach to modify the surface of injectable PdlLGA microspheres with macromolecules such as gel-MA to enhance proliferation rate of injected cells and potentially enable further grafting of tissue specific molecules. Statement of Significance Poly (dl lactic-co-glycolic) acid (PdlLGA) microspheres offer limited functional groups on their surface to enable proper grafting of tissue specific bioactive molecules. To overcome this limitation, previous approaches have suggested using alkaline solutions to introduce active groups to the surface; however, they may compromise surface topography and lose any potential surface patterns. Plasma polymerisation of bioactive monomers has been suggested to enhance surface biocompatibility; however, it is not applicable on low vapour pressure macromolecules such as most extracellular matrix (ECM) proteins and growth factors. This study aims to evaluate three different approaches to modify the surface of PdlLGA microspheres with gelatine-methacrylate (gel-MA) to enable further grafting of cross-linkable biomolecules without compromising the surface topography or the biocompatibility of the system.
Collapse
Affiliation(s)
- Abdulrahman Baki
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Cheryl V Rahman
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lisa J White
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David J Scurr
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Omar Qutachi
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kevin M Shakesheff
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
7
|
Himma NF, Anisah S, Prasetya N, Wenten IG. Advances in preparation, modification, and application of polypropylene membrane. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0112] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.
Collapse
|
8
|
Guo H, Huang J, Ye Y, Huang J, Wang X. Surface modification of polypropylene by the entrapping method using the short-chained stearyl-alcohol poly(ethylene oxide) ether modifier. J Appl Polym Sci 2016. [DOI: 10.1002/app.43607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haofei Guo
- College of Material Science and Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Juexin Huang
- College of Material Science and Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Yuansong Ye
- College of Material Science and Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Jian Huang
- College of Material Science and Engineering; Nanjing Tech University; Nanjing 210009 China
| | - Xiaolin Wang
- Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
9
|
Qin H, Nie S, Cheng C, Ran F, He C, Ma L, Yin Z, Zhao C. Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Shengqiang Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Fen Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Zehua Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| |
Collapse
|
10
|
Yin Z, Cheng C, Qin H, Nie C, He C, Zhao C. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer. J Biomed Mater Res B Appl Biomater 2014; 103:97-105. [DOI: 10.1002/jbm.b.33177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Zehua Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| | - Hui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University; Chengdu 610064 People's Republic of China
| |
Collapse
|
11
|
Lopez-Donaire ML, Santerre JP. Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J Appl Polym Sci 2014. [DOI: 10.1002/app.40328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M. Luisa Lopez-Donaire
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| |
Collapse
|
12
|
He C, Nie CX, Zhao WF, Ma L, Xiang T, Cheng CS, Sun SD, Zhao CS. Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chuan-Xiong Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Wei-Feng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Tao Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chong Sage Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Shu-Dong Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chang-Sheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
13
|
Peng B, Li Y, Zhao Z, Chen Y, Han CC. Facile surface modification of PVDF microfiltration membrane by strong physical adsorption of amphiphilic copolymers. J Appl Polym Sci 2013. [DOI: 10.1002/app.39516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Peng
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Yuyan Li
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Zhiguo Zhao
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Yongming Chen
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| | - Charles C. Han
- Laboratory of Polymer Physics and Chemistry; Institute of Chemistry, The Chinese Academy of Sciences; Beijing; 100190; People's Republic of China
| |
Collapse
|
14
|
Influence of alkyl chain length and molecular weight on the surface functionalization via adsorption/entrapment with biocidal cationic block copolymers. Eur Polym J 2011. [DOI: 10.1016/j.eurpolymj.2011.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wang D, Zou W, Li L, Wei Q, Sun S, Zhao C. Preparation and characterization of functional carboxylic polyethersulfone membrane. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.03.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Guo H, Ulbricht M. Preparation of thermo-responsive polypropylene membranes via surface entrapment of poly(N-isopropylacrylamide)-containing macromolecules. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02234a] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|