1
|
Erkal-Aytemur A, Mülazımoğlu İE, Üstündağ Z, Caglayan MO. A novel aptasensor platform for the detection of carcinoembryonic antigen using quartz crystal microbalance. Talanta 2024; 277:126376. [PMID: 38852341 DOI: 10.1016/j.talanta.2024.126376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
In this study, a quartz crystal microbalance (QCM) aptasensor for carcinoembryonic antigen (CEA), a well-known biomarker for various cancer types, was reported, utilizing two different aptamers. To achieve this, a nanofilm of 4-mercaptophenyl was electrochemically attached to gold-coated QCM crystal surfaces via the reduction of 4-mercaptobenzenediazonium salt (4 MB-DAT) using cyclic voltammetry. Subsequently, gold nanoparticles (AuNP) were affixed to this structure, and then aptamers (antiCEA1 and antiCEA2) modified with SH-functional ends bound to AuNPs completed the modification. The analytical performance of the CEA sensor was evaluated through simultaneous QCM measurements employing CEA solutions ranging from 0.1 ng/mL to 25 ng/mL. The detection limit (LOD) for CEA was determined to be 102 pg/mL for antiCEA1 and 108 pg/mL for antiCEA2 aptamers. Interday and intraday precision and accuracy tests yielded maximum results of 4.3 and + 3.8, respectively, for both aptasensors, as measured by relative standard deviation (RSD%) and relative error (RE%). The kinetic data of the aptasensors resulted in affinity values (KD) of 0.43 ± 0.14 nM for antiCEA1 and 0.75 ± 0.42 nM for antiCEA2. These values were lower than the reported values of 3.9 nM and 37.8 nM for both aptamers, respectively. The selectivity of the aptasensor was evaluated by measuring the signal changes caused by alpha-fetoprotein (AFP), cancer antigen (CA-125), and vascular endothelial growth factor (VEGF-165) individually and together at a concentration of 500 ng/mL, resulting in a maximum 4.1 % change, which was comparable to precision and accuracy values reported in the literature. After confirming the selectivity of the aptamers, recovery experiments were conducted using spiked commercial serum samples to simulate real samples, and the lowest recovery value obtained was 95.4 %. It was determined that two different aptasensors could be successfully used for the QCM-based detection of CEA in this study.
Collapse
Affiliation(s)
- Aslı Erkal-Aytemur
- Alanya Alaaddin Keykubat University, R.K. Faculty of Engineering, Fundamental Science, Antalya, Turkey
| | | | - Zafer Üstündağ
- Kütahya Dumlupınar University, Faculty of Arts and Science, Department of Chemistry, Kütahya, Turkey
| | - Mustafa Oguzhan Caglayan
- Bilecik Seyh Edebali University, Faculty of Engineering, Department of Bioengineering, Bilecik, Turkey.
| |
Collapse
|
2
|
Chen S, Chen L, Zhang Y, Xu D, Hu C, Zhang L, Chen J. Silver nanosheets self-assembled on polystyrene microspheres to form "hot spots" with different nanogap distances for high sensitive SERS detection. Talanta 2024; 268:125370. [PMID: 37924804 DOI: 10.1016/j.talanta.2023.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Herein, we reported a facile method to control the nanogap distance of silver (Ag) nanosheets to obtain high sensitive plasmonic Surface-enhanced Raman scattering (SERS) substrates. The sulfonated polystyrene (SPS) microspheres with different diameters were first fabricated using micro-emulsion synthesis, and then the SPS microspheres were coated with Ag nanosheets through chemical synthesis with citric acid/ascorbic acid to form Ag nanosheets@SPS (Ag@SPS) substrates with different nanogap distances. The results showed that the nanogap distance of Ag nanosheets self-assembled on SPS microspheres reduced from 80-150 nm to 28-68 nm when the diameter of SPS microspheres increased from 0.9 to 3.5 μm, and the enhancement factor (EF) increased from 105 to 107, the limit of detection of rhodamine 6G (R6G) for the Ag@SPS microspheres reduced from 10-10 to 10-13 mol/L. It confirmed that the Ag nanosheets coated on the surface of SPS microspheres could achieve ultra trace detection of analyte. Furthermore, the low concentration detection limit for melamine with the Ag@SPS microspheres substrate was about 10-8 mg/L, which is lower than the standard legislated by the European Union and the Food & Drug Administration. In addition, the SERS spectrum of 3-mercaptopropionic acid (3-MPA) could be also detected when its concentration was 10-8 mol/L. The prepared substrate offered a promising opportunity for SERS practical applications.
Collapse
Affiliation(s)
- Shaoyun Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Long Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Dong Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China.
| | - Long Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China.
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
3
|
Electroanalytical Determination of Sudan I Using Gold Nanoparticle/Graphene Nanoribbons-Modified Glassy Carbon Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Medetalibeyoglu H, Kotan G, Atar N, Yola ML. A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 2020; 220:121403. [DOI: 10.1016/j.talanta.2020.121403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/27/2022]
|
5
|
Jin Y, Zhou Q, Li Z, Yang Z, Fan HJS. Calcium-cross linked polysaccharide microcapsules for controlled release and antimicrobial applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Yeter EÇ, Şahin S, Caglayan MO, Üstündağ Z. An electrochemical label-free DNA impedimetric sensor with AuNP-modified glass fiber/carbonaceous electrode for the detection of HIV-1 DNA. CHEMICKE ZVESTI 2020; 75:77-87. [PMID: 32836707 PMCID: PMC7354876 DOI: 10.1007/s11696-020-01280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
In this study, a highly sensitive, electrochemical, and label-free DNA impedimetric sensor was developed using carbonized glass fiber-coal tar pitch (GF-CTP) electrodes supported with gold nanoparticles (AuNPs) for the detection of HIV-1 gene. Thiol-modified GF-CTP electrodes were prepared using amine crosslinking chemistry and AuNPs were self-assembled obtaining highly conductive nanoelectrodes, GF-CTP-ATP-Au. All steps of electrode modifications were characterized using electrochemical, spectroscopic, and microscopic methods. GF-CTP-ATP-Au electrode was then modified with a capture DNA probe (C-ssDNA) and optimized with a target DNA probe in terms of hybridization time and temperature between 30 and 180 min and 20-50 °C, respectively. Finally, the analytic performance of the developed ssDNA biosensor was evaluated using electrochemical impedance spectroscopy. The calibration of the sensor was obtained between 0.1 pM and 10 nM analyte working range. The limit of detection was calculated using signal to noise ratio of 3 (S/N = 3) as 13 fM. Moreover, interference results for two noncomplementary DNA probes were also tested to demonstrate non-specific ssDNA interactions. An electrochemical label-free DNA impedimetric sensor was successfully developed using a novel GF-CTP-ATP-Au electrode. This study suggests that highly sensitive DNA-based biosensors can be developed using relatively low-cost carbonaceous materials.
Collapse
Affiliation(s)
- Ece Ç. Yeter
- Department of Chemistry, Kütahya Dumlupınar University, 43100 Kütahya, Turkey
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - M. Oguzhan Caglayan
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100 Kütahya, Turkey
| |
Collapse
|
7
|
Sol-gel synthesis of stabilized silver nanoparticles in an organosiloxane matrix and its optical nonlinearity. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Campuzano S, Gamella M, Serafín V, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Biosensing and Delivery of Nucleic Acids Involving Selected Well-Known and Rising Star Functional Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1614. [PMID: 31739523 PMCID: PMC6915577 DOI: 10.3390/nano9111614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
In the last fifteen years, the nucleic acid biosensors and delivery area has seen a breakthrough due to the interrelation between the recognition of nucleic acid's high specificity, the great sensitivity of electrochemical and optical transduction and the unprecedented opportunities imparted by nanotechnology. Advances in this area have demonstrated that the assembly of nanoscaled materials allows the performance enhancement, particularly in terms of sensitivity and response time, of functional nucleic acids' biosensing and delivery to a level suitable for the construction of point-of-care diagnostic tools. Consequently, this has propelled detection methods using nanomaterials to the vanguard of the biosensing and delivery research fields. This review overviews the striking advancement in functional nanomaterials' assisted biosensing and delivery of nucleic acids. We highlight the advantages demonstrated by selected well-known and rising star functional nanomaterials (metallic, magnetic and Janus nanomaterials) focusing on the literature produced in the past five years.
Collapse
Affiliation(s)
- Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| | | | | | | | - Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (M.G.); (V.S.); (M.P.)
| |
Collapse
|
9
|
Ashokkumar T, Vijayaraghavan K. Mono‐ and Bimetallic Au(Core)‐Ag(Shell) Nanoparticles Mediated by
Ulva reticulata
Extracts. ChemistrySelect 2019. [DOI: 10.1002/slct.201903202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Yaseen T, Pu H, Sun DW. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:762-778. [DOI: 10.1080/19440049.2019.1582806] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tehseen Yaseen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Academy of Contemporary Food Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou, PR China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
11
|
Kariper İA, Çağlayan MO, Üstündağ Z. Heterogeneous Au/Ru hybrid nanoparticle decorated graphene oxide nanosheet catalyst for the catalytic reduction of nitroaromatics. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3644-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Obaidullah M, Furusawa T, Siddiquey IA, Bahadur NM, Sato M, Suzuki N. A fast and facile microwave irradiation method for the synthesis of ZnO@ZrO2 core-shell nanocomposites and the investigation of their optical properties. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ataman Sadık D, Eksi-Kocak H, Ertaş G, Boyacı İH, Mutlu M. Mixed-monolayer of N-hydroxysuccinimide-terminated cross-linker and short alkanethiol to improve the efficiency of biomolecule binding for biosensing. SURF INTERFACE ANAL 2018. [DOI: 10.1002/sia.6489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Demet Ataman Sadık
- Hacettepe University; Institute of Natural and Applied Sciences, Division of Nanotechnology and Nanomedicine, Plasma Aided Bioengineering and Biotechnology (PABB) Research Group Ankara Turkey
| | - Haslet Eksi-Kocak
- Istanbul Aydin University; Faculty of Engineering, Department of Biomedical Engineering Istanbul Turkey
| | - Gülay Ertaş
- Middle East Technical University; Department of Chemistry Ankara Turkey
| | - İsmail Hakkı Boyacı
- Hacettepe University; Faculty of Engineering, Department of Food Engineering Ankara Turkey
| | - Mehmet Mutlu
- TOBB Economy and Technology University; Faculty of Engineering, Department of Biomedical Engineering, Plasma Aided Biomedical (pabmed) Research Group Ankara Turkey
| |
Collapse
|
14
|
Zhao Z, Huang Y, Fan Y, Lai K. Rapid Detection of Flusilazole in Pears with Au@Ag Nanoparticles for Surface-Enhanced Raman Scattering. NANOMATERIALS 2018; 8:nano8020094. [PMID: 29419755 PMCID: PMC5852457 DOI: 10.3390/nano8020094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
Residual pesticides in vegetables or fruits have been become one of the world's most concerned food safety issues. Au-Ag core-shell nanoparticles (Au@Ag NPs) coupled with surface-enhanced Raman spectroscopy (SERS) was used for analysis of flusilazole which was widely applied in pears. Three different diameters of Au@Ag NPs were prepared to select the best SERS substrate for analyzing flusilazole. The Au@Ag NPs sizes of 90 ± 7 nm showed the highest enhancement effect and could be detected flusilazole standard solution and the minimum detectable concentration was 0.1 mg/L. Flusilazole in pear could also identified at as low as 0.1 μg/g. The amount of adsorbent is critical in the sample preparation process and the best amount of each absorber dosage was 0.6 g MgSO₄, 0.2 g C18 and 0.2 g primary secondary amine (PSA). The experimental results indicated a good linear relationship between the Raman intensities of chief peaks and the concentrations of flusilazole solutions (R² = 0.924-0.962). This study shows that Au@Ag as SERS substrate has great potential to analyze of flusilazole in food matrices.
Collapse
Affiliation(s)
- Zhihui Zhao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lin Gang New City, Shanghai 201306, China.
| | - Yiqun Huang
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lin Gang New City, Shanghai 201306, China.
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Yuxia Fan
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lin Gang New City, Shanghai 201306, China.
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, Lin Gang New City, Shanghai 201306, China.
- Engineering Research Center of Food Thermal Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
15
|
Chaffin E, O'Connor RT, Barr J, Huang X, Wang Y. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles. J Chem Phys 2016; 145:054706. [PMID: 27497571 PMCID: PMC4975750 DOI: 10.1063/1.4960052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023] Open
Abstract
Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.
Collapse
Affiliation(s)
- Elise Chaffin
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Ryan T O'Connor
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - James Barr
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
16
|
Üstündağ İ, Erkal A, Koralay T, Kadıoğlu YK, Jeon S. Gold nanoparticle included graphene oxide modified electrode: Picomole detection of metal ions in seawater by stripping voltammetry. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816070108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Dzimitrowicz A, Jamroz P, Nyk M, Pohl P. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles. MATERIALS 2016; 9:ma9040268. [PMID: 28773393 PMCID: PMC5502932 DOI: 10.3390/ma9040268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.
Collapse
Affiliation(s)
- Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Marcin Nyk
- Department of Advanced Materials Engineering and Modelling, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Stanislawa Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze St. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
18
|
Wang CG, Wu XZ, Di D, Dong PT, Xiao R, Wang SQ. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering. NANOSCALE 2016; 8:4672-4680. [PMID: 26853057 DOI: 10.1039/c5nr04750a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 10(7) mm(-2)) and thus facilitate the generation of "hot spots". The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 10(6)-10(7), with the maximum enhancement factor of 1.32 × 10(7) yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing.
Collapse
Affiliation(s)
- C G Wang
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China. and Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| | - X Z Wu
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China.
| | - D Di
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China. and Dingyuan Automotive Proving Ground, Nanjing, Jiangsu Province 210028, P.R. China
| | - P T Dong
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China.
| | - R Xiao
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| | - S Q Wang
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| |
Collapse
|
19
|
Jiménez-Hernández L, Estévez-Hernández O, Hernández-Sánchez M, Díaz J, Farías- Sánchez M, Reguera E. 3-mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: Their properties and peroxidase conjugation. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Powell JA, Venkatakrishnan K, Tan B. Hybridized enhancement of the SERS detection of chemical and bio-marker molecules through Au nanosphere ornamentation of hybrid amorphous/crystalline Si nanoweb nanostructure biochip devices. J Mater Chem B 2016; 4:5713-5728. [DOI: 10.1039/c6tb01301e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the fabrication of hybrid Si SERS nanobiosensor biochip devices.
Collapse
Affiliation(s)
- Jeffery Alexander Powell
- Ultrashort Laser Nanomanufacturing Research Facility
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada, M5B 2K3
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada, M5B 2K3
| | - Bo Tan
- Nano-imaging Lab
- Department of Aerospace Engineering
- Ryerson University
- Toronto
- Canada, M5B 2K3
| |
Collapse
|
21
|
Carbonaceous Materials-12: a Novel Highly Sensitive Graphene Oxide-Based Carbon Electrode: Preparation, Characterization, and Heavy Metal Analysis in Food Samples. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0198-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Fabrication of an Electrochemical
E. coli
Biosensor in Biowells Using Bimetallic Nanoparticle‐Labelled Antibodies. ELECTROANAL 2014. [DOI: 10.1002/elan.201400370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014. [DOI: 10.1016/j.microc.2014.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Yola ML, Eren T, Atar N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.074] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Gupta VK, Yola ML, Atar N, Üstündağ Z, Solak AO. Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.12.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.10.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Gupta VK, Atar N, Yola ML, Üstündağ Z, Uzun L. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. WATER RESEARCH 2014; 48:210-7. [PMID: 24112627 DOI: 10.1016/j.watres.2013.09.027] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/02/2013] [Accepted: 09/13/2013] [Indexed: 05/19/2023]
Abstract
In this study, a novel catalyst based on Fe@Au bimetallic nanoparticles involved graphene oxide was prepared and characterized by transmission electron microscope (TEM), and x-ray photoelectron spectroscopy (XPS). The nanomaterial was used in catalytic reductions of 4-nitrophenol and 2-nitrophenol in the presence of sodium borohydride. The experimental parameters such as temperature, the dosage of catalyst and the concentration of sodium borohydride were studied. The rates of catalytic reduction of the nitrophenol compounds have been found as the sequence: 4-nitrophenol>2-nitrophenol. The kinetic and thermodynamic parameters of nitrophenol compounds were determined. Activation energies were found as 2.33 kcal mol(-1) and 3.16 kcal mol(-1) for 4-nitrophenol and 2-nitrophenol, respectively. The nanomaterial was separated from the product by using a magnet and recycled after the reduction of nitrophenol compounds. The recyclable of the nanocatalyst is economically significant in industry.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| | | | | | | | | |
Collapse
|
28
|
Biosynthesis of silver nanoparticles using chitosan immobilized Bacillus cereus: Nanocatalytic studies. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Zhou R, Srinivasan MP. In situ synthesis and immobilization of metallic nanoparticles on a calixarene monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13042-13049. [PMID: 24093762 DOI: 10.1021/la401751d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A covalently immobilized calix[7]hydroquinone monolayer was used as the host matrix to synthesize metallic NPs using an in situ redox process. The characteristics of different metallic ions that affect the synthesis process were studied. Metallic ions with less charges, lower oxidation state in the reaction, and higher standard redox potential provided better yield. Bimetallic NPs with a core-shell structure were synthesized by a sequential deposition of different metals on the same monolayer. The process was applied to form a layer of immobilized NPs on flat and curved surfaces. The ability to synthesize and immobilize well-controlled NPs on different surfaces has promising applications in decoration of irregular surfaces of miniaturized, three-dimensional objects.
Collapse
Affiliation(s)
- Ruitao Zhou
- Chemical and Biomolecular Engineering, National University of Singapore , Singapore 117576, Singapore
| | | |
Collapse
|
30
|
Güzel R, Ekşi H, Üstündağ Z, Solak AO. Synthesis, characterization, and application of silver nanoparticle-thiophenol nanocomposite film on the glassy carbon surface. SURF INTERFACE ANAL 2013. [DOI: 10.1002/sia.5328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Remziye Güzel
- Faculty of Education, Dept. of Chemistry; Dicle University; Diyarbakr Turkey
- Faculty of Science, Department of Chemistry; Ankara University; Ankara Turkey
| | - Haslet Ekşi
- Faculty of Science, Department of Chemistry; Ankara University; Ankara Turkey
| | - Zafer Üstündağ
- Faculty of Arts and Sciences, Dept. of Chemistry; Dumlupnar University; Kütahya Turkey
| | - Ali Osman Solak
- Faculty of Science, Department of Chemistry; Ankara University; Ankara Turkey
- Faculty of Engineering, Chem Eng Department; Kyrgyz-Turk Manas University; Bishkek Kyrgyzstan
| |
Collapse
|
31
|
A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interface Sci 2013; 406:231-7. [DOI: 10.1016/j.jcis.2013.06.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/01/2013] [Accepted: 06/03/2013] [Indexed: 12/15/2022]
|
32
|
Kesik M, Kanik FE, Hızalan G, Kozanoglu D, Esenturk EN, Timur S, Toppare L. A functional immobilization matrix based on a conducting polymer and functionalized gold nanoparticles: Synthesis and its application as an amperometric glucose biosensor. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.06.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Yola ML, Atar N, Üstündağ Z, Solak AO. A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.03.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Wang YH, Yu CM, Pan ZQ, Wang YF, Guo JW, Gu HY. A gold electrode modified with hemoglobin and the chitosan@Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0977-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 2011; 112:2373-433. [PMID: 22204603 DOI: 10.1021/cr100449n] [Citation(s) in RCA: 1576] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769 008, Orissa, India
| | | |
Collapse
|