1
|
Gochev GG, Campbell RA, Schneck E, Zawala J, Warszynski P. Exploring proteins at soft interfaces and in thin liquid films - From classical methods to advanced applications of reflectometry. Adv Colloid Interface Sci 2024; 329:103187. [PMID: 38788307 DOI: 10.1016/j.cis.2024.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
The history of the topic of proteins at soft interfaces dates back to the 19th century, and until the present day, it has continuously attracted great scientific interest. A multitude of experimental methods and theoretical approaches have been developed to serve the research progress in this large domain of colloid and interface science, including the area of soft colloids such as foams and emulsions. From classical methods like surface tension adsorption isotherms, surface pressure-area measurements for spread layers, and surface rheology probing the dynamics of adsorption, nowadays, advanced surface-sensitive techniques based on spectroscopy, microscopy, and the reflection of light, X-rays and neutrons at liquid/fluid interfaces offers important complementary sources of information. Apart from the fundamental characteristics of protein adsorption layers, i.e., surface tension and surface excess, the nanoscale structure of such layers and the interfacial protein conformations and morphologies are of pivotal importance for extending the depth of understanding on the topic. In this review article, we provide an extensive overview of the application of three methods, namely, ellipsometry, X-ray reflectometry and neutron reflectometry, for adsorption and structural studies on proteins at water/air and water/oil interfaces. The main attention is placed on the development of experimental approaches and on a discussion of the relevant achievements in terms of notable experimental results. We have attempted to cover the whole history of protein studies with these techniques, and thus, we believe the review should serve as a valuable reference to fuel ideas for a wide spectrum of researchers in different scientific fields where proteins at soft interface may be of relevance.
Collapse
Affiliation(s)
- Georgi G Gochev
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland; Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, M13 9PT Manchester, UK
| | - Emanuel Schneck
- Physics Department, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| | - Piotr Warszynski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30239 Krakow, Poland
| |
Collapse
|
3
|
Pasquier C, Pezennec S, Bouchoux A, Cabane B, Lechevalier V, Le Floch-Fouéré C, Paboeuf G, Pasco M, Dollet B, Lee LT, Beaufils S. Protein Transport upon Advection at the Air/Water Interface: When Charge Matters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12278-12289. [PMID: 34636247 DOI: 10.1021/acs.langmuir.1c01591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of dense protein interfacial layers at a free air-water interface is known to result from both diffusion and advection. Furthermore, protein interactions in concentrated phases are strongly dependent on their overall positive or negative net charge, which is controlled by the solution pH. As a consequence, an interesting question is whether the presence of an advection flow of water toward the interface during protein adsorption produces different kinetics and interfacial structure of the adsorbed layer, depending on the net charge of the involved proteins and, possibly, on the sign of this charge. Here we test a combination of the following parameters using ovalbumin and lysozyme as model proteins: positive or negative net charge and the presence or absence of advection flow. The formation and the organization of the interfacial layers are studied by neutron reflectivity and null-ellipsometry measurements. We show that the combined effect of a positive charge of lysozyme and ovalbumin and the presence of advection flow does induce the formation of interfacial multilayers. Conversely, negatively charged ovalbumin forms monolayers, whether advection flow is present or not. We show that an advection/diffusion model cannot correctly describe the adsorption kinetics of multilayers, even in the hypothesis of a concentration-dependent diffusion coefficient as in colloidal filtration, for instance. Still, it is clear that advection is a necessary condition for making multilayers through a mechanism that remains to be determined, which paves the way for future research.
Collapse
Affiliation(s)
- Coralie Pasquier
- INRAE, Institut Agro, STLO, F-35042 Rennes, France
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
| | | | - Antoine Bouchoux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | | | | | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| | | | - Benjamin Dollet
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin CEA - Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Sylvie Beaufils
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| |
Collapse
|
4
|
Hu L, Wu L, Lai C, Li M, Yang W. The influence of pH and concentration on the zeta potential, hydrophobicity of OVT and the relationship between its structure and interfacial behaviors. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Linfang Hu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Chanjuan Lai
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Mingliang Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Boire A, Bouchoux A, Bouhallab S, Chapeau AL, Croguennec T, Ferraro V, Lechevalier V, Menut P, Pézennec S, Renard D, Santé-Lhoutellier V, Laleg K, Micard V, Riaublanc A, Anton M. Proteins for the future: A soft matter approach to link basic knowledge and innovative applications. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Gharbi N, Labbafi M, Madadlou A. Effect of heat treatment on foaming properties of ostrich (Struthio camelus) egg white proteins. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1280676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Negar Gharbi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Labbafi
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ashkan Madadlou
- Department of Food Science and Technology, Razi Food Chemistry Lab, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
7
|
Moderate conformational impact of citrate on ovotransferrin considerably increases its capacity to self-assemble at the interface. J Colloid Interface Sci 2015; 437:219-226. [DOI: 10.1016/j.jcis.2014.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
|